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The natural killer cell: a further innate mediator
of gouty inflammation?

Victoria G Empson1, Fiona M McQueen2 and Nicola Dalbeth1

Natural killer (NK) cells are vital effector cells of innate immunity because of their rapid cytotoxic and cytokine-producing

responses to cell stress or infection. A distinguishing feature of NK cells is the ability to balance these signals with those of

normal homeostasis through the expression of an array of inhibitory and activating receptors. Two functional subsets of NK cells

exist: the more mature CD56dim population is potently cytotoxic, whereas CD56bright NK cells have low cytotoxicity but produce

much greater amounts of cytokines, and express homing molecules for secondary lymphoid organs and sites of inflammation.

NK cells have been identified as important modulatory cells in shaping adaptive immune responses by interacting with dendritic

cells (DCs) and T cells. NK cells also interact with cells of the innate immune system such as monocytes and macrophages.

This review outlines the biology of NK cells and the potential role of NK cells in modulating gouty inflammation.
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Human natural killer (NK) cells are large, granular and short-lived
cells from the lymphocyte lineage.1,2 They develop primarily in the
bone marrow from haematopoietic progenitor cells after activation by
Notch ligands3–5 and are characterized by the expression of neural cell
adhesion molecule-1 (CD56) and lack of CD3.6 The level of CD56
expression also delineates two functionally distinct subsets of NK cells:
the potently cytotoxic CD56dim subset, and the poorly cytotoxic
CD56bright subgroup that secretes large amounts of cytokines.6–8

Unlike T and B lymphocytes, which possess receptors for a single
cognate antigen, NK cells express a repertoire of germline-encoded
receptors that survey an array of molecular signals of self and the
steady-state condition, as well as markers of cell stress, malignancy and
infection.9 This confers NK cells with the unique ability to sense and
integrate a diverse range of signals of both homeostasis and disease.
Owing to their rapid cytotoxic or cytokine-producing responses in the
early stage of bacterial, viral and parasitic infection, NK cells are
considered predominantly an innate immune cell.10–14 In addition, a
vital modulatory role for NK cells is emerging in which they interact
with and modulate cells of both innate and adaptive immune
responses.14–21

Acute gout is an orchestrated inflammatory response to mono-
sodium urate (MSU) crystals that is mediated by cells and soluble
factors of the innate immune system.22–28 The involvement of NK
cells in gouty inflammation has not yet been studied. Due to the
important innate effector and modulatory functions of this cell,
particularly the release of pro-inflammatory cytokines,8,15 a role
for NK cells in inflammatory conditions is proposed. This review

summarizes the biology of human NK cells and data that suggest a
potential involvement of human NK cells in mediating acute gouty
arthritis.

Human and murine NK cells share cytotoxic and cytokine-produ-
cing functions, and to a large extent their phenotypes and signalling
mechanisms are conserved.29 A major distinction between NK cells
from the two species is the lack of CD56 and presence of NK1.1
(which is not expressed in humans) on murine NK cells, which
hinders direct comparison.12,30 However, subsets of murine NK cells
have been defined by CD27 and CD11b expression, which progresses
from CD27highCD11blow to CD27lowCD11bhigh.31 The murine
CD27high group may correspond to human CD56bright NK cells,
with similarities in expression of chemokine receptors, inhibitory
receptors and cytokines.31 In this review, we focus on human NK cells.

NK CELL RECEPTORS AND SIGNAL INTEGRATION

During transient contact with NK cells, ligands that are expressed on
the surface of target cells interact with a multitude of inhibitory and
activating NK cell receptors.32,33 Inhibitory receptors sense signals of
normal homeostasis, such as major histocompatibility complex class I,
and related molecules that are downregulated on stressed, infected or
malignant cells,34,35 whereas activating receptors bind to non-self
ligands (for example, ectopically expressed viral proteins) or molecules
that are upregulated on stressed or transformed cells.36–38 The
inhibitory receptors comprise two main groups: immunoglobulin
superfamily receptors including killer-cell immunoglolubin-like
receptors and leukocyte immunoglobulin-like receptors/transcripts,
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and those of the C-type lectin domain family (Table 1). Activating NK
cell receptors include molecules that are structurally related to
inhibitory receptors, such as killer-cell immunoglolubin-like receptors
and C-type lectin-domain receptors, as well as many unrelated
receptors, such as the natural cytotoxicity family (Table 2). With the
exception of CD16, an activating receptor that binds to the Fc
component of immunoglobulin G, enabling cytotoxicity towards
antibody-coated target cells, the synergetic effects of multiple coacti-
vating receptors are required to induce NK cell activation.39

The opposing effects of proximal activating and inhibitory NK cell
receptors are integrated by the net phosphorylation of intracellular
signalling molecules resulting from the activity of kinases or phos-
phatases recruited by the receptors.9 Activating receptors recruit
kinases through motifs in their own cytoplasmic tails or through
accessory molecules bearing immunoreceptor tyrosine-based motifs
or other kinase-recruiting motifs.40–43 All inhibitory receptors associ-
ate with accessory molecules that contain immunoreceptor tyrosine-
based inhibition motifs, enabling the recruitment of Src homology-2
domain-containing inositol-5-phosphatase 1 and Src homology-2
domain-containing tyrosine phosphatases 1 and 2.44–47

Several questions regarding the activation and signalling of NK cells
remain unanswered. The mechanisms by which NK cell activation
diverges to generate different effector functions are unclear.48 Further-
more, NK cells can be activated by cytokines49 and Toll-like receptor
ligands.50 However, it is not known whether these receptors share the
same signalling pathways as receptors for membrane-bound ligands.

PHENOTYPES OF NK CELL SUBSETS

Two major phenotypic and functional subsets of NK cells are
distinguished by CD56 expression levels.6 CD56dim NK cells are the
more cytotoxic population, whereas the CD56bright subset has limited

cytotoxicity but secretes large amounts of cytokines and chemo-
kines.6–8 When resting, these populations differ in their expression
of 473 transcripts, with 176 expressed exclusively by the CD56dim

subset and 130 expressed only by CD56bright NK cells.51 Consistent
with the known functional differences between the subsets, CD56bright

cells express lower levels of a number of activating receptors, including
killer-cell immunoglolubin-like receptors, the natural cytotoxicity
receptors and CD16, but constitutively express the inhibitory hetero-
dimer CD94/NKG2A8,52,53 (Table 3). In contrast, cytokine receptors
tend to be more highly expressed on the CD56bright subset, including
those for interleukin (IL)-1, IL-2, IL-15 and IL-18.52,54 Furthermore,
the high-affinity IL-2 receptor (CD25) is expressed constitutively on
CD56bright NK cells, but is absent from the CD56dim subset.55

CD56bright NK cells also express c-kit, a receptor tyrosine kinase that
enhances IL-2-induced proliferation.55,56 NK cell subsets also possess

Table 1 Activating natural killer (NK) cell receptors32,33

Activating receptors Ligands

2B4 (CD244) CD48

BY55 (CD160) HLA-C

CD2 LFA-3 (CD58)

CD7 SECTM1, Galectin

CD11c/18 ICAM-1, iC3b

CD16 (FcgRIIIA) IgG

CD44 Hyaluronan

CD59 C8, C9

CRACC (CD319) CRACC (CD319)

DNAM-1 (CD226) PVR (CD155), CD112

KIR2DL4 (CD158d) HLA-G (soluble)

KIR2DS1-2 HLA-C (low affinity)

KIR2DS3-6 Unknown

KIR3DS1 Unknown

LFA-1 (aLb2, CD11a/18) ICAM-1-5

MAC-1 (aMb2, CD11b/18) ICAM-1, iC3b, fibrinogen

NKG2C (CD94/159c) HLA-E

NKG2D (CD314) ULBPs, MICA, MICB

NKp30 (CD337) BAT-3

NKG2E HLA-E

NKp44 Viral hemaglutinin

NKp46 (CD335) Viral hemaglutinin

NTBA NTBA

VLA-4 (a4b1, CD49d/29) VCAM-1, fibronectin

VLA-5 (a5b1, CD49e/29) Fibronectin

Table 2 Inhibitory NK cell receptors32,33

Inhibitory receptors Ligands

CEACAM1 CEACAM1

IRp60 (CD300a) Unknown

KIR2DL1 (CD158a) HLA-C group 2

KIR2DL2/3 (CD158b) HLA-C group 1

KIR2DL5 Unknown

KIR3DL1 HLA-B alleles and Bw4

KIR3DL2 HLA-A alleles

KLRG1/MAFA E/N/P-cadherin

NKG2A (CD94/CD159a) HLA-E

NKR-P1A (CD161) LLT1

LAIR1 Collagen

LIR-1/IL-T2 (CD85j) Multiple HLA class I

Siglec-7 (CD328) Sialic acid

Siglec-9 (CD329) Sialic acid

Table 3 Phenotype of NK cell subsets8,54

Subset markers CD56bright CD56dim

CCR7 ++ �
CD2 ++ +

CD16 +/� ++

CD44 ++ +

CD49e ++ +

CD56 ++ +

CD62L ++ +/�
CD94/NKG2A ++ +/�
CD117 (c-kit) ++ �
CXCR1 � ++

CX3CR1 � ++

CXCR3 ++ +/�
IL1R1 ++ +

IL18R ++ +

IL2R-abg + �
IL2R-bg ++ +

ILT2 � +

KIR � +

NKp46 ++ +

LFA-1 + ++

++, Strong expression; +, weak expression; +/�, variable expression; �, lacking expression.
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distinct homing characteristics, and their phenotypes differ with
respect to adhesion molecules and chemokine receptors.57 In parti-
cular, the expression of CD62L, CCR7 and CXCR3 on CD56bright NK
cells enables their entry to lymph nodes.57–59

Evidence has recently emerged showing that CD56bright NK cells
represent an immature population that differentiates to the CD56dim

phenotype. First, CD56bright NK cells have longer telomeres.60,61

Second, the CD56bright population has a greater proliferative potential,
which is reflected in their expression of the high-affinity IL-2 receptor
and c-kit.55,56 Third, at 10 days after transfer of NK cells into NOD–
SCID mice, almost all CD56bright cells acquire the CD56dimCD16+
phenotype, whereas the CD56dim cells do not change their expression
of CD56 or CD16.61

DISTRIBUTION OF NK CELL SUBSETS

NK cell distribution in steady-state conditions
Natural killer cells represent a minor population of lymphocytes in the
peripheral blood and secondary lymphoid organs in which they
represent 10–15% of lymphocytes and 5% of all mononuclear cells,
respectively.62 NK cells are also present in non-lymphoid tissues,
including the liver, bone marrow and the uterus during pregnancy.63

CD56dim NK cells are the dominant subgroup in peripheral blood,
comprising 90% of NK cells.6 In contrast, 75–95% of NK cells in
secondary lymphoid organs apart from the spleen belong to the
CD56bright subset.52,53 Owing to the large reservoir of lymphocytes
in secondary lymphoid tissues, CD56bright NK cells are probably at
least as numerous as the CD56dim subset overall.54,64 The high
proportion of CD56bright cells in most secondary lymphoid organs is
because of the expression of the chemokine receptors CCR7 and
CXCR3, and the adhesion molecule CD62L, which interacts with high
endothelial venules.58 Within the secondary lymphoid tissues,
CD56bright NK cells home to the parafollicular regions, in which
T cells and dendritic cells (DCs) are also found.52 Expression of the
sphingosine-1-phosphate 5 receptor increases with maturation in both
mice and human NK cells.65 This is proposed to account for the
preferential migration of the more mature subsets to the peripheral
blood, in which sphingosine-1-phosphate is present at higher
concentrations than in the tissues.65

Expansion of CD56bright NK cells in sites of inflammation
Expanded CD56bright NK cell populations have been observed in
various inflamed sites, including the joints15,66 airways and pleural
space15,67 peritoneal space15 and in psoriatic skin.68 Preferential
recruitment of the CD56bright subset of NK cells into sites of
inflammation may account for these observations. All chemokine
receptors except CCR4 are found at greater levels on the CD56bright

subset.57 In particular, CCR5 has been identified as a crucial chemo-
kine receptor for migration of NK cells to inflamed tissues,69 and is
more highly expressed on CD56bright than CD56dim NK cells from the
synovial fluid of inflamed joints.66

The expansion of CD56bright NK cells in inflamed sites may also
occur because of preferential survival. Several studies have shown
enhanced survival of the CD56bright subset when compared with
CD56dim NK cells upon exposure to reactive oxygen and nitrogen
species, which are generated by activated neutrophils and macro-
phages during inflammation.70,71 In agreement with these findings,
CD56bright cells are less susceptible to apoptosis than CD56dim NK cells
when exposed to pleural fluid from tuberculosis patients.72 Selective
depletion of CD56dim NK cells may contribute to the expanded ratios
of CD56bright NK cells observed in inflamed tissues; however, as the
total number of NK cells is not decreased in these sites,66 other

processes are likely to be involved. Enhanced proliferation of
CD56bright NK cells is a further potential mechanism of their accu-
mulation in inflamed sites. NK cell proliferation is induced by IL-2,52

IL-1573 and IL-21.74 Because of the expression of the high-affinity IL-2
receptor and c-kit on CD56bright NK cells, these cells are more sensitive
to stimulation with IL-2 than CD56dim NK cells.52,56 The proliferative
response to IL-2 is further enhanced in the CD56bright subset, but not
in CD56dim NK cells, in the presence of IL-21.75

NK CELL FUNCTIONS

The vital role of NK cell cytotoxicity in controlling intracellular
pathogens is well known, and is shown by severe or fatal viral
infections in the few reported cases of selective NK cell defi-
ciency.76–78 There is also a large body of evidence showing that NK
cells kill malignant cells.79 Two mechanisms of NK cell cytotoxicity
exist: the deposition of lytic granules into target cells and the
expression of death receptor ligands, such as tumour necrosis factor
(TNF), TNF-related apoptosis-inducing ligand and Fas ligand.80–82

NK cell granules contain granzymes, serine proteases that induce
apoptosis by caspase-dependent and independent mechanisms, and
perforin, a pore-forming protein that disrupts the target cell mem-
brane. Granzymes can be transported into target cells in the absence of
perforin through receptor-mediated endocytosis; for example, by the
mannose-6-phosphate receptor on target cells.83,84 When resting,
CD56dim NK cells show greater cytotoxicity than the CD56bright

population.6,7 Lytic granules produced by CD56dim NK cells contain
10 times more perforin and granzyme A than those of CD56bright

cells.7 Unlike the CD56bright population, CD56dim NK cells also express
CD16, which enables antibody-mediated cytotoxicity.7 However, the
cytotoxic capability of the two subsets is equalized after stimulation
with IL-2 or IL-12.85

Natural killer cells also contribute to the innate immune response
by cytokine production. They are a major source of interferon-g
(IFN-g), which has a panopoly of effects including anti-viral and
anti-bacterial actions, promotion of Th1 responses, suppression of
proliferation of infected or transformed cells, stimulation of major
histocompatibility complex class I expression and DC maturation.86–92

Another important pro-inflammatory cytokine released by NK cells is
TNF-a.8,93,94 Depending on context, NK cells can also express
the anti-inflammatory cytokines, transforming growth factor-b
(TGF-b)8,95 and IL-10,8,96 and the haematopoietic factors, granulo-
cyte-macrophage colony-stimulating factor and IL-3,8,97 and promote
T helper 2 responses by producing IL-5 and IL-13.98 In addition to
cytokines, NK cells produce several chemokines, including macro-
phage inflammatory protein-1a and -b and RANTES.99–101 Stimula-
tion with different cytokines can induce specific responses by NK cells.
For example, the combination of IL-12 and IL-18 induces IFN-g
expression by NK cells,49 whereas IL-12 and IL-15 together induce
IL-10.8 The CD56bright population of NK cells produce cytokines more
vigorously than CD56dim cells after stimulation.8

Both the cytotoxic and cytokine-producing functions of NK cells
were previously thought to occur without prior sensitization. How-
ever, recent work has shown that NK cell responses to bacterial and
viral pathogens require priming by DCs, involving the cross-presenta-
tion of membrane-bound IL-15 in secondary lymphoid organs.102

IL-18 may also contribute to in vivo NK cell priming.103 It has been
suggested that normal exposure to commensal microbes may be
sufficient to induce a population of primed NK cells,104 which is
consistent with the finding that only a small proportion of isolated
NK cells respond to activation signals.39 A further unexpected adaptive
feature of NK cells is the capability to develop immunological memory.
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Two investigators have recently published data showing enhanced res-
ponses to antigen re-exposure by a long-lived subset of NK cells.105,106

INTERACTION OF NK CELLS WITH OTHER IMMUNE CELLS

Natural killer cells can promote or limit immune responses by
releasing cytokines, providing co-stimulatory molecules or by selective
cytotoxicity of other immune cells. Interactions between NK cells and
numerous cell types have been documented. The most significant
cross-talk seems to involve DCs, other lymphocytes and monocytes/
macrophages, which are discussed individually below.

NK cell interactions with dendritic cells (DCs)
Interactions between NK cells and DCs have recently been the focus
of considerable research. The CD56bright subset is of particular
importance because of its proximity to DCs in secondary lymphoid
tissues.52 DCs secrete IL-15, which is required for NK cell develop-
ment, priming, function and survival.49,102,107–109 DC-derived IL-2,
IL-12 and IL-18 also activate NK cell function and proliferation.16,110–

112 The effects of NK cells on DCs may be either pro- or anti-
inflammatory. NK cells activate DCs and induce maturation, leading
to polarization to a T helper 1 response.18 NK cells can also kill
immature DCs, which have lower major histocompatibility complex
class I expression.19,113,114 This ‘immune editing’ can strengthen the
immune response by reducing the development of tolerogenic DCs.115

A tolerogenic phenotype can also be induced in DCs by a subset of
immune-suppressive CD56+ CD16+ CD69+ NK cells.116 These NK cells
are not cytotoxic, express IL-10, IL-21 and TGF-b and can be derived
from NK precursor cells by exposure to the transmembrane form
of IL-15.116

NK cell interactions with other lymphocytes
T-cell-derived IL-2 is a potent inducer of NK cell proliferation and
activity, particularly in the CD56bright subset.52 NK cell function is
suppressed by TGF-b production by regulatory T cells.117,118 In turn,
NK cells provide co-stimulation for T and B cells by the surface
expression of molecules, including CD40L, OX40, CD86 and
CD70.119,120 NK cells also promote B-cell activation and class switch-
ing,121 and prime CD8 T cells by producing IFN-g that can exert an
effect directly on T cells or indirectly by promoting DC matura-
tion.16,86 NK cells may also negatively regulate other lymphocytes, for
example, by reversibly suppressing T-cell clonal expansion by inducing
cell-cycle arrest,122 or by lysing active T cells.123,124

NK cell interactions with monocytes and macrophages
Emerging data also support a complex interaction between NK cells
and monocytes/macrophages (Figure 1). There is potential for this

interaction in vivo, as these cells come into contact in the red pulp and
marginal zone of the spleen and in peripheral tissues.125 NK cell
responses to various stimuli are enhanced by interactions with
monocytes or macrophages. These include NK cell responses to
bacterial pathogens,17,20,21,126–129 parasites,14,130–132 tumour cells,133

and endogenous danger signals.134 The stimulation of NK cell survival
and function by monocyte and macrophage-derived cytokines, such as
IL-12, IL-15 and IL-18, is well established.14,17,49,52,99,135 In addition to
cytokine release, monocytes and macrophages can modulate NK cell
activity through various contact-dependent mechanisms,15 including
expression of ligands for the activating NK cell receptors
NKGD220,21,126,129 and NKp80,133 or interactions mediated by co-
stimulatory molecules.128,132 Conversely, under some experimental
conditions, monocytes can inhibit NK cell activation136 and suppress
NK cell proliferation.137

Interactions between monocytes/macrophages and NK cells are
reciprocal, and can result in activation or suppression of monocyte/
macrophage activity. Activated NK cells promote the maturation of
monocytes by secreting IFN-g and TNF-a, and can profoundly alter
monocyte differentiation.138 Several studies have shown mutual acti-
vation of NK cells and monocytes. The co-culture of NK cells from
inflamed joints with peripheral blood monocytes induces increased
expression of TNF-a by monocytes and IFN-g by CD56bright NK cells
in a contact-dependent manner.15 Furthermore, engagement of
NKp80 by activation-induced C-type lectin on monocytes increases
the production of TNF-a by both cell types and enhances IFN-g
expression by NK cells.133

Depending on the experimental conditions, NK cells can also
inhibit monocyte/macrophage responses. Cytotoxicity by NK cells
has been implicated in this interaction. Lipopolysaccharide-treated
macrophages are killed because of upregulation of stress-induced
ligands for the NKGD2 receptor.20 In contrast, killing of monocytes
activated by IL-4 and IL-13 is mediated by engagement of natural
cytoxicity receptors on NK cells.137 Lack of NK cell cytotoxicity
towards monocytes in perforin-deficient mice leads to accumulation
of monocytes with excess TNF-a production.139 It is possible that the
production of anti-inflammatory cytokines, such as IL-10 and TGF-b,
by NK cells could also regulate monocytes and macrophages; however,
this has not yet been analysed.

THE NK CELL AS AN INNATE MEDIATOR OF ACUTE GOUTY

INFLAMMATION?

Acute gout is a self-limited inflammatory response to MSU crystals
in the joints and periarticular tissue. Cells of innate immunity,
monocytes/macrophages, mast cells and neutrophils, are critical
to the pathogenesis of acute gouty inflammation. These cells
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survival

Ligands for NK cell receptors
Co-stimulatory molecules

Cytokines
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Cytotoxicity

NK
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Figure 1 Interactions between natural killer (NK) cells and monocytes.
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produce soluble mediators that further amplify the inflammatory
response.22–28,140,141

Monocytes and macrophages are critical in sensing MSU crystals
and initiating acute gouty inflammation.22,23 Recent in vivo evidence
suggests that resident macrophages trigger the early response to MSU,
which is followed by the infiltration of circulating monocytes to the
inflamed site.142 After activation by MSU crystals, monocytes/macro-
phages release pro-inflammatory mediators such as IL-6, IL-8, TNF-a
and IL-1b.141,143,144 In particular, monocyte/macrophage production
of IL-1b has a pivotal role in mediating gouty inflammation.23,145

Activation of the NALP3 inflammasome by phagocytosed MSU
crystals results in the maturation and secretion of latent IL-1b through
a caspase-1-dependent mechanism.145 The critical role of monocyte/
macrophage-derived IL-1b in MSU-induced inflammation has been
confirmed in both in vivo studies23,145 and small clinical trials of gouty
inflammation.146,147

In addition to monocytes/macrophages, mast cells contribute to the
initiation of gouty inflammation. Ablation of mast cells in a murine
model of MSU crystal-induced peritonitis significantly reduces
neutrophil recruitment,24 and a transient peak in mast cell number
precedes neutrophil influx in the rat air-pouch model of
MSU-induced inflammation.148

After initiation of the acute gout attack, a large number of
neutrophils are recruited into the joint. Neutrophils are rare in healthy
synovial fluid and their influx into the affected joint is a hallmark of
acute gout. In the inflamed joint, MSU crystals trigger the degranula-
tion of neutrophils after phagocytosis,148–150 receptor-mediated acti-
vation151 or by direct lysis of the cell membrane,152 which mediates
the symptoms of acute gout by releasing potent mediators of pain,
tissue damage, and further inflammation including prostaglandin E2,
reactive oxygen species, nitric oxide, leukotriene B4, S100A8, S100A9,
IL-1 and IL-8.26–28,153–155

It is currently unknown whether the NK cell, another cellular
mediator of innate immunity, also has a role in the inflammatory
response to MSU crystals. However, several lines of evidence suggest
that the involvement of NK cells is plausible. First, as outlined above,
NK cells interact with monocytes/macrophages, the primary cell type
involved in the initiation phase of gout. Second, NK cells in the joints of
patients with inflammatory arthritis (including gout) show an expan-
sion of the CD56bright population, which can produce large amounts of
both pro- and anti-inflammatory cytokines.8,15,66 Therefore, CD56bright

NK cells could potentially have a role in either enhancing or resolving
gouty inflammation by interacting with other innate immune cells. The
documented contact-dependent reciprocal activation of monocytes and
CD56bright NK cells15 indicate a positive feedback loop that could
contribute to the amplification of the inflammatory response in acute
gout. Alternately, NK cells could, in principle, be involved in the
spontaneous resolution phase of gout, which is also mediated by cells
of the innate immune system.156 Specifically, inflammation is dam-
pened by the clearance of neutrophils by monocytes/macrophages and
release of TGF-b by differentiated macrophages.156 NK cells are capable
of expressing anti-inflammatory cytokines, such as IL-10 and TGF-b,
and have also been shown to limit pro-inflammatory monocyte activity
by killing highly active cells.20,139 The potential anti-inflammatory
effect of the expanded CD56bright NK cell populations observed in
inflammatory arthritis has not yet been analysed.

CONCLUSION

NK cells, particularly the CD56bright subset, are capable of shaping
innate immune responses because of their ability to migrate to sites of
inflammation and produce large quantities of cytokines and chemo-

kines. Interactions between NK cells and other innate immune cells
such as monocytes and macrophages in vitro induce diverse outcomes,
including activation, maturation, differentiation and death. Acute
gout represents an inflammatory condition in which immune
modulation by NK cells could potentially occur, as it is primarily
orchestrated by cells of the innate immune response. Affected joints
from patients with inflammatory arthritis have an enriched popula-
tion of CD56bright NK cells, and NK cells isolated from these joints
interact with monocytes in a pattern of reciprocal activation. Mono-
cytes and macrophages are critical in initiating and propagating the
inflammatory response to MSU crystals. Further analysis into how NK
cells might regulate monocyte/macrophage function is warranted and
has the potential to identify a new modulatory role for NK cells in
acute gouty inflammation.
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