

# Efficacy and safety of stem cells in the treatment of ischemic stroke A meta-analysis

Yu Xiong, MD<sup>a</sup>, Xiumei Guo, MD<sup>a</sup>, Wen Gao, MD<sup>a</sup>, Chuhan Ke, MD<sup>a</sup>, Xinyue Huang, MD<sup>a</sup>, Zhigang Pan, MD<sup>a</sup>, Chunhui Chen, MD<sup>a</sup>, Hanlin Zheng, MD<sup>a</sup>, Weipeng Hu, MD<sup>a</sup>, Feng Zheng, MD<sup>a</sup>, Hao Yao, MD<sup>b,\*</sup>

#### Abstract

**Background:** Stem cell therapy on ischemic stroke has long been studied using animal experiments. The efficacy and safety of this treatment in ischemic stroke patients remain uncertain.

**Methods:** We searched for all clinical randomized controlled trials published before October 2023, on PubMed, EMBASE, and the Cochrane Library using predetermined search terms, and performed a meta-analysis of the efficacy of stem cell therapy in ischemic stroke patients.

**Results:** 13 studies that included 592 ischemic stroke patients were reviewed. The mRS (MD -0.32, 95% Cl -0.64 to 0.00,  $l^2 = 63\%$ , P = .05), NIHSS (MD -1.63, 95% Cl -2.69 to -0.57,  $l^2 = 58\%$ , P = .003), and BI (MD 14.22, 95% Cl 3.95-24.48,  $l^2 = 43\%$ , P = .007) showed effective stem cell therapy. The mortality (OR 0.42, 95% Cl 0.23-0.79,  $l^2 = 0\%$ , P = .007) showed improved prognosis and reduce mortality with stem cell therapy.

**Conclusion:** Stem cell therapy reduces mortality and improves the neurological prognosis of ischemic stroke patients. However, due to the different types of stem cells used and the limited data in the reported studies, the safety of clinical applications of stem cells in patients with ischemic stroke must be carefully evaluated. Future randomized controlled trials with large sample sizes from controlled cell sources are warranted to validate this finding.

**Abbreviations:** BI = Barthel index, mRS = modified Rankin scale, MSCs = mesenchymal stem cells, NIHSS = National Institutes of Health Stroke Scale, RCT = randomized controlled trial.

Keywords: ischemic stroke, meta-analysis, mortality, randomized controlled trials, stem cells

# 1. Introduction

Ischemic stroke due to cerebral ischemia and hypoxia is a cerebrovascular disease with a high rate of disability. Ischemic stroke represents the main cause of disability and death worldwide.<sup>[1]</sup> The mortality rate of ischemic stroke within 30 days has been reported to range from 5% to 15%, and the disability rate may exceed 50%.<sup>[2,3]</sup> More than 40% of survivors experience ischemic stroke again, with even higher mortality and disability rates.<sup>[2,4]</sup> To date, recombinant tissue plasminogen activator standard intravenous thrombolytic therapy represents the only clinically approved drug therapy for acute cerebral infarction. However, this treatment has limitations, mostly linked to its application within a short window period of 4.5 hours following onset of symptoms.<sup>[5-7]</sup> Endovascular interventional therapy is also being increasingly used, but remains only applicable to patients with large vascular

occlusions.<sup>[8,9]</sup> The disability rates for patients not eligible for either thrombolytic therapy or thrombectomy are even higher. Although rehabilitation treatment contributes to the recovery of neurological function, its curative effect remains limited.<sup>[10,11]</sup>

To date, a large number of preclinical studies have shown that stem cells can improve the recovery of neurological function after a cerebral ischemic injury through a variety of mechanisms. This includes the inhibition of inflammation, promotion of axonal regeneration, and neuroprotective effects.<sup>[12-19]</sup> Nevertheless, there have been few clinical trials on the treatment of ischemic stroke with stem cells.<sup>[20]</sup> In this study, we conducted meta-analyses of previously published clinical randomized controlled trials to determine the efficacy and safety of stem cells in the treatment of ischemic stroke.

YX, XG, WG, and CK contributed equally to this work.

The authors have no funding and conflicts of interest to disclose.

Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Xiong Y, Guo X, Gao W, Ke C, Huang X, Pan Z, Chen C, Zheng H, Hu W, Zheng F, Yao H. Efficacy and safety of stem cells in the treatment of ischemic stroke: A meta-analysis. Medicine 2024;103:12(e37414).

Received: 30 November 2023 / Received in final form: 4 January 2024 / Accepted: 7 February 2024

http://dx.doi.org/10.1097/MD.000000000037414

The datasets generated during and/or analyzed during the current study are publicly available.

Supplemental Digital Content is available for this article.

<sup>&</sup>lt;sup>a</sup> Department of Neurosurgery, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China, <sup>b</sup> Department of Neurosurgery, Jinjiang Municipal Hospital, Quanzhou, China.

<sup>\*</sup> Correspondence: Hao Yao, Department of Neurosurgery, Jinjiang Municipal Hospital, Quanzhou, China (e-mail: 1536143277@qq.com).

## 2. Materials and methods

# 2.1. Search strategy

Two researchers (Y.X and F.Z) independently searched the PubMed, EMBASE, and Cochrane Library databases for any clinical randomized controlled trials published before October 2023. Keywords used in the search strategies included "stem cells," "ischemic stroke," and "randomized controlled trials" (MeSH and Entry Terms). The keywords used in this search strategy included "Randomized Controlled Trial" AND ("Progenitor Cells" OR "Mother Cells" OR "Colony-Forming Unit" OR "Stem Cells") AND ("Ischemic Stroke" OR "Cryptogenic Ischemic Stroke" OR "Cryptogenic Stroke" OR "Cryptogenic Embolism Stroke" OR "Wake-up Stroke" OR "Acute Ischemic Stroke" OR "Ischemic Stroke"). Repeated literature, case reports, summary meetings, animal experiments, other reviews and meta-analyses, ongoing experiments, and failed experiments were excluded for various reasons. Prior to the final data analysis, we ran a search algorithm for any new relevant publications. A flow chart of the specific search strategy is included in Figure 1 (Appendices Figures). The review was not registered. Ethical approval is not used for this study.

## 2.2. Inclusion criteria and exclusion criteria

The inclusion criteria of the eligible studies were as follows: ischemic stroke was diagnosed by computed tomography or magnetic resonance imaging (regardless of whether the disease was acute or chronic); intervention was stem cell therapy (regardless of type, dose, and injection mode); outcome indicators were the National Institutes of Health Stroke Scale (NIHSS), modified Rankin scale (mRS), Barthel index (BI), and safety results, including mortality and other complications; and the study was a clinical randomized controlled trial (RCT).

The exclusion criteria were as follows: interventions were not stem cells; other diseases; outcome indicators did not meet; only one group of data available or data could not be extracted or the data were incomplete; and follow-up failed due to various reasons.

#### 2.3. Study selection

Two researchers (Y.X and F.Z) preliminarily screened studies that met the inclusion criteria according to the title and summary of the study. The full text of the preliminary study was then retrieved to assess whether they qualified for inclusion. Discrepancies were resolved through discussions.

### 2.4. Data extraction

Researcher Y.X used the pre-designed standardized form to extract data and the data was checked by the second researcher (F.Z) to evaluate the bias risk and evidence quality of individual included studies. The extracted information included the study country, study type, details of interventions, specific classification of diseases, treatment methods, outcome indicators, and other data u sed to assess the risk of bias and quality of evidence. Whenever possible, missing data were obtained by directly emailing the study authors.

# 2.5. Assessment quality

The Cochrane Risk Bias Assessment Tool was used to assess the bias of each study. The degree of bias risk (low risk, unknown risk, high risk) was evaluated from 7 aspects (random sequence generation, allocation concealment, blinding researchers and participants, integrity of outcome data, blind evaluation of research outcome, selective reporting of research result, and other sources of bias), so as to reflect the quality of each research.

#### 2.6. Outcome measures

Mortality was the primary outcomes. The secondary outcomes included mRS, mRS  $\leq$  2, NIHSS, BI, and related complications. Patients with mRS  $\leq$  2 are generally considered to be non-disabling stroke patients with good prognosis.<sup>[21]</sup>



# Table 1

# The characteristics of the 13 included studies.

| Author                   | Country        | Year | Age   | Туре        | Blind      | Immuno-<br>suppressive<br>treatment | Rehabilitation | Stem<br>cell<br>group | Control<br>group<br>(Saline) | Cell type                     | Route of administration  | Outcomes scale                      |
|--------------------------|----------------|------|-------|-------------|------------|-------------------------------------|----------------|-----------------------|------------------------------|-------------------------------|--------------------------|-------------------------------------|
| Bang <sup>[24]</sup>     | Korea          | 2012 | 30-75 | Phase III   | Yes        | NR                                  | NR             | 5                     | 25                           | Autologous MSCs               | Intravenous<br>Injection | BI, mRS                             |
| Bhasin <sup>[25]</sup>   | India          | 2016 | 33-61 | NR          | Incomplete | NR                                  | Yes            | 10                    | 10                           | Autologous MNCs               | Intravenous<br>Injection | SAE, mBI, FM,<br>VEFG, MRC,<br>BDNF |
| Bhatia <sup>[26]</sup>   | India          | 2018 | 20-80 | NR          | Yes        | NR                                  | NR             | 10                    | 10                           | Autologous MNCs               | Arterial Injection       | mRS, NIHSS, SAE                     |
| Chen <sup>[27]</sup>     | CHINA          | 2014 | 35-75 | Phase II    | NR         | NR                                  | Yes            | 15                    | 15                           | PBSC                          | NR                       | NIHSS, mRS                          |
| Chung <sup>[28]</sup>    | Korea          | 2021 | 30-75 | Phase II    | Yes        | NR                                  | Yes            | 39                    | 15                           | Autologous MSCs               | Intravenous<br>Injection | mRS, SAE, MI, FMA,<br>FAC           |
| Fang-1 <sup>[29]</sup>   | CHINA          | 2018 | 18-80 | Phase I/IIa | Incomplete | NR                                  | NR             | 5                     | 6                            | Autologous EPCs               | NR                       | BI, mRS, NIHSS,<br>SAE, SSS         |
| Fang-2 <sup>[29]</sup>   | CHINA          | 2018 | 18-80 | Phase I/IIa | Incomplete | NR                                  | NR             | 5                     | 6                            | Autologous MSCs               | NR                       | BI, mRS, NIHSS,<br>SAE, SSS         |
| Hess <sup>[30]</sup>     | England<br>USA | 2017 | 18-83 | Phase II    | Yes        | NR                                  | NR             | 65                    | 61                           | Allogenic MAPCs               | Intravenous<br>Iniection | mRS, NIHSS, BI,<br>SAE              |
| Jaillard <sup>[31]</sup> | France         | 2020 | 18-70 | NR          | Incomplete | NR                                  | Yes            | 16                    | 15                           | Autologous MSCs               | Intravenous              | NIHSS, mRS, BI,<br>SAF_FMS          |
| Jin <sup>[35]</sup>      | CHINA          | 2017 | NR    | NR          | NR         | NR                                  | NR             | 10                    | 10                           | Autologous MNCs               | NR                       | NIHSS, BI, mRS,<br>SAF, FIM         |
| Lee <sup>[32]</sup>      | Korea          | 2010 | 30-75 | NR          | Incomplete | NR                                  | NR             | 16                    | 36                           | Autologous MSCs               | Intravenous<br>Injection | mRS, SAE, SDF-1a                    |
| Prasad <sup>[21]</sup>   | India          | 2014 | 18-75 | Phase II    | Yes        | NR                                  | NR             | 60                    | 60                           | Autologous MNCs               | Intravenous              | mRS, BI, NIHSS, IV                  |
| Savitz <sup>[33]</sup>   | USA            | 2019 | 30-83 | Phase II    | Yes        | NR                                  | NR             | 29                    | 16                           | Autologous BM<br>ALD-401 cell | Arterial Injection       | mRS, BI, NIHSS,<br>SAF, DWL ALDH    |
| Xie <sup>[34]</sup>      | CHINA          | 2016 | 45-71 | NR          | NR         | NR                                  | NR             | 12                    | 10                           | Allogeneic                    | NR                       | SAE, MMSE, HAMA,<br>HBSD, UPDBS     |

ALDH = aldehyde dehydrogenase, BDNF = brain-derived neurotrophic growth factor, BI = Barthel index, DWI = diffusion-weighted imaging, EPCs = endothelial progenitor cells, FAC = functional ambulatory category, FIM = functional independence measure, FM = Fugl Meyer scale, FMA = Fugl-Meyer Assessment, FMS = Fugl-Meyer Score, HAMA = Hamilton Anxiety Rating Scale, HRSD = Hamilton Rating Scale for Depression, IV = infarct volume, MAPCs = multipotent adult progenitor cells, MI = motricity index, MMSE = mini-mental state examination, MNCs = marrow mononuclear cells, mRS = modified Rankin Scale, MSCs = mesenchymal stem cells, SAE = severe adverse events, SDF-1a = stromal cells derived factor-1a, SSS = Scandinavia Stroke Scale, UCMSCs = umbilical cord mesenchymal stem cells, UPDRS = Unified Parkinson's Disease Rating Scale, VEGF = vascular endothelial growth factor.

## 2.7. Statistical analyses

The meta-analysis of data was carried out using the REVMAN software. We obtained the 95% CI and P value of each study by measuring the MD of the continuous variable and the OR of the binary variable. Q-value statistics and  $I^2$  value statistics were used to assess the heterogeneity of the study. According to the recommendations of the Cochrane Statistical Methods Group, the heterogeneity P value was set to .1, and the  $I^2$  statistic was interpreted as: 0% to 40%-low heterogeneity, 30% to 60%-moderate heterogeneity, 50% to 90%-substantive heterogeneity, 75% to 100%-obvious heterogeneity. If there was substantial heterogeneity ( $I^2 \ge 50\%$ ), researchers performed a sensitivity analysis or created a Galbraith plot (STATA) to identify the source of heterogeneity.<sup>[22]</sup> For the outcome indicators of more than 10 patients, researchers developed a funnel plot (STATA) to assess publication bias.<sup>[23]</sup> Egger and Begg's test was used to evaluate the asymmetry of the funnel plot, and a value of P > .05 was considered reflective of the absence of any publication bias.

# 3. Results

## 3.1. Search results

A total of 264 studies were identified using the search method, and 210 articles were included after removing duplicate articles. Another 136 articles were excluded during primary screening (because they were unrelated to the ailments studied or were meta-analyses, reviews, conference summaries, or animal experiments). Following a full review of the remaining 74 studies, 31 ongoing studies and 30 failed studies were excluded for various reasons (due to withdrawal of a large number of participants during the experiment and insufficient recruitment). The retrieval strategy was repeated before data analysis, and no additional studies were identified in the update. Finally, 13 studies<sup>[21,24-35]</sup> involving 592 patients were included. The overall characteristics of the 13 studies and specific information on the individual studies are represented in detail in Table 1

### 3.2. Risk of bias in included studies

The Cochrane risk bias assessment tool was used to assess the quality of the included 13 RCTs. Among these, 11 studies<sup>[21,24-32,35]</sup> specified the process of generating random sequences, including random number tables, computer random number generation, coin throwing, and double-blind lottery. Two studies did not specify the randomization process.<sup>[33,34]</sup> Six studies<sup>[24-26,30,33,35]</sup> mentioned blindness for participants and major researchers, and 2 studies<sup>[27,29]</sup> only considered single blindness. Four studies<sup>[21,31,32,34]</sup> were not blinded to the researchers or participants (open label) and one study<sup>[28]</sup> did not elaborate on blindness. There were follow-up losses in the 13 studies; due to the small number of missing follow-ups, the number was balanced between groups, which was insufficient to impact the intervention effect. The results of the bias risk assessment are represented in Figures S1 and 2, Supplemental Digital Content, http://links.lww.com/MD/L843; http://links.lww.com/MD/L870 (Appendices Figures).

#### 3.3. Outcomes

We included a total of 13 studies (Fang's study used 2 cell types; Fang-1 and Fang-2), of which mesenchymal stem cells (MSCs) were reported in 6,<sup>[24,28,29,31,32,34]</sup> marrow mononuclear cells (MNC) in 4,<sup>[21,25,26,35]</sup> peripheral blood stem cells in 1,<sup>[27]</sup> endothelial progenitor cells in 1,<sup>[29]</sup> multipotent adult progenitor cells in 1,<sup>[130]</sup> and ALD-401 cells in 1.<sup>[33]</sup> Included studies were divided into the "MSCs" group, "MNCs" group and "Other" group, and we performed subgroup analysis based on the different stem cell types.

**3.3.1.** *Mortality.* At the end of the follow-up period, 13 studies<sup>[21,24-32,35,36]</sup> reported the number of deaths, and the data showed that the mortality in the stem cell intervention group was lower than that in the control group (OR 0.42, 95% CI 0.23–0.79,  $I^2 = 0\%$ , P = .007, Fig. 2B). Our subgroup analysis revealed that MSCs (OR 0.25, 95% CI 0.07–0.83,  $I^2 = 0\%$ , P = .02) and other types of stem cells (OR 0.33, 95% CI 0.12–0.88,  $I^2 = 0\%$ , P = .03) had a significant effect on the mortality in patients with ischemic stroke, while MNCs (OR 0.88, 95% CI 0.30–2.58,  $I^2 = 0\%$ , P = .82) had no significant effect on mortality (Fig. 2B).

**3.3.2.** *mRS*. The mRS scores at the end of the follow-up were reported in 10 studies.<sup>[21,24,26-32,35]</sup> The data showed that stem cell intervention had a beneficial trend for patients with ischemic stroke (MD –0.32, 95% CI –0.64, 0.00,  $I^2$  = 63%, P = .05, Fig. 3A). Based on different stem cell types, subgroup analysis showed that MSCs (MD –0.10, 95% CI –0.42, 0.22,  $I^2$  = 0%, P = .55), MNCs (MD –0.57, 95% CI –1.58, 0.44,  $I^2$  = 83%, P = .27), and other types of stem cells (MD –0.32, 95% CI –0.91, 0.28,  $I^2$  = 80%, P = .30) had no significant effect on mRS scores in patients with ischemic stroke (Fig. 3A). Statistically, there was significant heterogeneity between studies ( $I^2$  > 50%), and the analysis by Galbraith diagram showed that 2 studies<sup>[27,35]</sup> significantly contributed to heterogeneity (Figure S3, Supplemental Digital Content, http://links.lww.com/MD/L844) (Appendices Figures).

**3.3.3.** *mRS*  $\leq$  **2.** Four studies<sup>[21,28,30,32]</sup> reported an mRS  $\leq$  2 score at the end of follow-up. There was no significant difference between the stem cell intervention group and the control group (OR 1.07, 95% CI 0.67–1.73,  $I^2 = 0\%$ , P = .77, Fig. 3B). Based on different stem cell types, subgroup analysis showed that MSCs (OR 0.66, 95% CI 0.19–2.27,  $I^2 = 0\%$ , P = .51), MNCs (OR 1.31, 95% CI 0.63–2.73, P = .46), and other types of stem cells (OR 1.04, 95% CI 0.50–2.14, P = .92) had no significant effect on ischemic stroke patients with mRS  $\leq$  2 (Fig. 3B).

NIHSS. NIHSS scores were reported in 3.3.4. studies<sup>[21,26,27,29-31,34,35]</sup> at the end of the follow-up. Significant differences were detected between the 2 groups in favor of stem cell intervention (MD -1.63, 95% CI -2.69 to -0.57,  $I^2 = 58\%$ , P = .003, Fig. 4A). Based on different stem cell types, subgroup analysis showed that MNCs had a significant effect on NIHSS score in patients with ischemic stroke (MD -1.68, 95% CI  $-2.63, -0.72, I^2 = 0\%, P < .001$ , while MSCs (MD -1.69, 95%CI  $-3.81, 0.43, I^2 = 38\%, P = .12$ ) and other stem cell types (MD -1.57,95% CI  $-4.81, 1.66, I^2 = 90\%, P = .34$ ) did not (Fig. 4A). Again, significant heterogeneity was observed between the included studies (P > 50%). A sensitivity analysis of the 8 studies found that heterogeneity decreased significantly with little effect on the pooled result, as summarized in Figure 3B (MD -2.02, 95% CI -2.96 to -1.08,  $I^2 = 35\%$ , P < .001, Fig. 4B).

**3.3.5.** *BI.* Five studies<sup>[21,24,31,34,35]</sup> reported the BI scale at the end of the follow-up, and data showed that there was a significant difference in the BI scale favoring stem cell intervention (MD 14.22, 95% CI 3.95–24.48,  $I^2 = 43\%$ , P = .007, Fig. 2A). Subgroup analysis on different stem cell types showed that MSCs

(MD 9.74, 95% CI 0.15–19.33,  $I^2 = 1\%$ , P = .05) and MNCs (MD 24.20, 95% CI 11.57–36.83, P < .001) had a significant effect on BI score in patients with ischemic stroke (Fig. 2A).

3.3.6. Complications. Complications were recorded in the context of 13 studies<sup>[21,24-35]</sup> at the end of the follow-up. Three studies<sup>[25,27,34]</sup> reported no early or late complications during or after transplantation. The data showed that there was no significant difference in the incidence of complications between the stem cell intervention and control groups (OR 0.58, 95%) CI 0.21–1.63,  $I^2 = 13\%$ , P = .31, Fig. 5A). Among the studies included in the present meta-analysis, recurrent ischemic stroke or transient ischemic attack (TIA), infection, and seizures were the most common complications. Therefore, we further performed a subgroup analysis. The data showed that there was no significant difference in the incidence of recurrent ischemic stroke or TIA (OR 0.80, 95% CI 0.23–2.83, *I*<sup>2</sup> = 14%, *P* = .73, Fig. 5B), infection (OR 0.77, 95% CI 0.45–1.29,  $I^2 = 0\%$ , P = .32, Fig. 2B), and seizure (OR 1.09, 95% CI 0.41–2.90,  $I^2$ = 6%, P = .86, Fig. 5B) between the treatment group and the control group. The specific complications in each study are represented in Table 2. Distribution of the complications is shown in Figure 6.

### 4. Discussion

In this study, 13 studies that met the inclusion criteria were assessed to evaluate the efficacy and safety of stem cells in the treatment of ischemic stroke by examining mortality, mRS, NIHSS, BI, and complications. The mRS, NIHSS, and BI scores are majorly used to evaluate the severity of ischemic stroke in the clinical setting, of which the mRS is utilized to evaluate the functional independence of patients, NIHSS to accurately assess the severity of neurological defects, and BI to evaluate the quality of daily life and the degree of disability.<sup>[37]</sup> MRS  $\leq$  2 was linked to patient prognosis.<sup>[28]</sup> An mRS  $\leq$  2 is considered to have an overall better prognosis in the absence of severe disability.

Overall, compared with the control group, stem cell treatment had a significant effect on patients with ischemic stroke (P < .05), which was manifested by a decrease in mortality in the stem cell intervention group and an improvement in mRS, NIHSS, and BI scores.

The mRS  $\leq$  2 showed no significant difference across the stem cell intervention and control groups. However, different stem cell types were used in different studies, including MSCs, MNC, peripheral blood stem cells, endothelial progenitor cells, multipotent adult progenitor cells and ALD-401 cells. We divided the included studies into the "MSCs" group, the "MNCs" group, and "Other" group, and performed subgroup analysis on all the outcomes. Data analysis showed that the application of MSCs could improve the BI score of patients with ischemic stroke and reduce mortality but showed no effect on mRS and NIHSS scores. The application of MNCs can improve the NIHSS score and BI score of patients, but has no effect on mRS score and mortality. The application of stem cells from the "Other" group can reduce the mortality of patients but has no effect on mRS and NIHSS scores. The differences in results of the overall and subgroup analyses may be related to the different types of stem cells used, the different evaluation criteria of mRS, NIHSS, and BI scores, and the basic scores of the patient population. The factors owing to these differences should be explored further.

Complications are linked to many factors, including the severity of the disease, injection route of stem cells, type of stem cells, dose of stem cells, and duration of administration. Among the 411 reported complications, 1 study reported drug-related injuries (20 cases),<sup>[30]</sup> 4 studies reported recurrent ischemic stroke (8 cases),<sup>[28,29,31,32]</sup> 4 studies reported infection (67 cases),<sup>[26,30,32]</sup> 1 study reported transient ischemic attack (1 case),<sup>[28]</sup> and 2 studies reported epileptic seizures (10 cases),<sup>[29,32]</sup> Subgroup analysis

|                                                               | Ste                     | m Cell                           | I                  | C          | ontrol      |                      |         | Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean Difference                           |
|---------------------------------------------------------------|-------------------------|----------------------------------|--------------------|------------|-------------|----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Study or Subgroup<br>1.1.1 MSCs                               | Mean                    | SD                               | Total              | Mean       | SD          | Total                | Weight  | IV, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IV. Random. 95% Cl                        |
| Lee 2010                                                      | 4                       | 1.6                              | 16                 | 4.6        | 1.9         | 36                   | 6.8%    | -0.60 [-1.60, 0.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| Jaillard 2020                                                 | 3                       | 0.63                             | 16                 | 3          | 0.66        | 15                   | 14.7%   | 0.00 [-0.45, 0.45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| Chung 2021                                                    | 3.36                    | 0.86                             | 39                 | 3.4        | 0.88        | 15                   | 13.5%   | -0.04 [-0.56, 0.48]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| Bang 2005                                                     | 2.81                    | 2.6                              | 5                  | 3.85       | 1.09        | 25                   | 1.7%    | -1.04 [-3.36, 1.28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                         |
| Subtotal (95% CI)                                             |                         |                                  | 76                 |            |             | 91                   | 36.8%   | -0.10 [-0.42, 0.22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                         |
| Heterogeneity: Tau <sup>#</sup> =<br>Test for overall effect: | 0.00; CI<br>Z = 0.59    | hi <sup>a</sup> = 1.<br>I (P = 0 | 83, df=<br>1.55)   | = 3 (P =   | 0.61);      | I <b>=</b> 0%        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 1.1.2 MNCs                                                    |                         |                                  |                    |            |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Prasad 2014                                                   | 3.61                    | 1.22                             | 59                 | 3.47       | 1.31        | 59                   | 14.7%   | 0.14 [-0.32, 0.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| Jin 2017                                                      | 1.2                     | 0.4                              | 10                 | 2.3        | 0.8         | 10                   | 12.9%   | -1.10 [-1.65, -0.55]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |
| Bhatia 2018                                                   | 1.3                     | 1.8                              | 10                 | 2.3        | 2.2         | 10                   | 2.8%    | -1.00 [-2.76, 0.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                         |
| Subtotal (95% CI)                                             |                         |                                  | 79                 |            |             | 79                   | 30.4%   | -0.57 [-1.58, 0.44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| Heterogeneity: Tau <sup>=</sup> =<br>Test for overall effect: | 0.59; CI<br>Z = 1.10    | hi <sup>¤</sup> = 11<br>I (P = 0 | 1.93, d1<br>1.27)  | f = 2 (P = | = 0.00      | 3); I <b>¤</b> = 8   | 33%     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 1.1.3 Others                                                  |                         | 10.02121                         | 122                | 2 2 2 1    |             |                      | 1558    | 1727 212 13 1 1 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| Hess 2017                                                     | 2.8                     | 1.32                             | 67                 | 2.79       | 1.25        | 62                   | 15.0%   | 0.01 [-0.43, 0.45]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |
| Chen 2014                                                     | 2.1                     | 0.3                              | 15                 | 2.7        | 0.5         | 15                   | 17.9%   | -0.60 [-0.90, -0.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |
| Subtotal (95% CI)                                             | 045.0                   |                                  | 82                 | 10         | 0.001       | 17 000               | 32.9%   | -0.32 [-0.91, 0.28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |
| Heterogeneity: l'auf =<br>Test for overall effect.            | Z = 1.05                | ni* = 5.<br>6 (P = 0             | 04, df =<br>1.30)  | = 1 (P =   | 0.02);      | L = 803              | 70      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Total (95% CI)                                                |                         |                                  | 237                |            |             | 247                  | 100.0%  | -0.32 [-0.64, -0.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                         |
| Heterogeneity: Tau <sup>a</sup> =                             | 0.12; CI                | hi" = 21                         | 1.34, dt           | (= 8 (P =  | = 0.00      | 6); I <b>=</b> 6     | 63%     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Test for overall effect.                                      | Z=1.97                  | (P=0                             | .05)               |            |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eavours lexperimental Eavours (control)   |
| Test for subaroup diff                                        | erences                 | : Chi <sup>2</sup> =             | = 1.03.            | df = 2 (   | P = 0.6     | 60). <b> </b> ² =    | 0%      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a source texperimental a source (control) |
| 0.1                                                           | Ster                    | m Cell                           |                    | Contro     | ol<br>Traci | 144                  | (       | Odds Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Odds Ratio                                |
| 124 MSCs                                                      | Even                    | IS 10                            |                    | vents      | rotal       | weig                 | nt M-H, | Kandom, 95% Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M-H, Kandom, 95% Cl                       |
| 1.2. I WSUS                                                   |                         | G                                | 20                 | 2          | 10          | 6.0                  | OV.     | 0.741040.4551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |
| Chung 2021                                                    |                         | 4                                | 39                 | 2          | 15          | 6.9                  | 70      | 0.74 [0.12, 4.55]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Lee 2010                                                      |                         | 2                                | 10                 | (          | 30          | 1.9                  | 70      | 0.59 [0.11, 3.23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Subtotal (95% CI)                                             |                         |                                  | 55                 | 1          | 51          | 14./                 | %       | 0.00 [0.19, 2.27]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| lotal events                                                  | 0.00                    | 6                                |                    | 9          |             |                      | 0.04    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Heterogeneity: Tau*<br>Test for overall effect                | = 0.00; 0<br>t. Z = 0.6 | Chi⁼=<br>66 (P =                 | 0.03, c<br>: 0.51) | 1f = 1 (F  | ° = 0.8     | 6); I <sup>z</sup> = | 0%      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 1.2.2 MNCs                                                    | 1.0                     | - 1101                           |                    | C STREET,  | 1000        | 0.258                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Prasad 2014                                                   |                         | 29                               | 57                 | 26         | 59          | 42.4                 | %       | 1.31 [0.63, 2.73]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Subtotal (95% CI)                                             |                         |                                  | 57                 |            | 59          | 42.4                 | %       | 1.31 [0.63, 2.73]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Total events                                                  | 1                       | 29                               |                    | 26         |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Heterogeneity: Not a<br>Test for overall effect               | pplicab<br>t: Z = 0.7   | le<br>73 (P =                    | 0.46)              |            |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| 1.2.3 Others                                                  |                         |                                  |                    |            |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Hess 2017                                                     | 3.                      | 24                               | 65                 | 22         | 61          | 42.9                 | %       | 1.04 [0.50, 2.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Subtotal (95% CI)                                             |                         |                                  | 65                 |            | 61          | 42.9                 | %       | 1.04 [0.50, 2.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |
| Total events                                                  |                         | 24                               |                    | 22         |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Heterogeneity: Not a                                          | pplicab                 | le                               |                    | 1608735    |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Test for overall effect                                       | t: Z = 0.1              | 10 (P =                          | : 0.92)            |            |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Total (95% CI)                                                |                         | 1                                | 77                 |            | 171         | 100.0                | %       | 1.07 [0.67, 1.73]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                         |
| Total events                                                  | 4                       | 59                               |                    | 57         |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
|                                                               |                         |                                  |                    | <b>U</b> 1 |             |                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |
| Heterogeneity: Tau <sup>2</sup>                               | = 0.00:                 | Chi <sup>z</sup> =               | 0.94. 0            | 1f = 3 (F  | P = 0.8     | 2);  ⁼=              | 0%      | The part of the pa |                                           |
| Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect  | = 0.00; 0<br>t: Z = 0 2 | Chi <sup>≇</sup> =<br>29 (P =    | 0.94, c<br>0.77)   | lf = 3 (F  | P = 0.8     | l2); <b>I</b> ≇=     | 0%      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2 0.5 1 2 5                             |

Figure 2. Meta-analysis of the effect of stem cells on ischemic stroke with Barthel index (A). Meta-analysis of the effect of stem cells on mortality in patients with ischemic stroke (B).

of common complications, including recurrent ischemic stroke or TIA, infection, and seizure, showed that there was no significant difference between the experimental and control groups. Therefore, future studies should assess whether genetic charge affect the prognosis of patients following stem cell therapy. In addition, further research may focus on the reduction of the incidence of complications during stem cell transplantation, which currently remains a clinical challenge.<sup>[38]</sup> Furthermore, the socioeconomic value and cost-effectiveness of stem cells in the treatment of ischemic stroke should also be evaluated, as the financial and social burden of the disease plays a prominent role in long-term outcomes.<sup>[39]</sup>

Several preclinical animal experiments have demonstrated that stem cell transplantation following ischemic stroke may significantly improve neurological deficits.<sup>[40,41]</sup> In addition to directly replacing cells, stem cells are associated with

| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Moor                                                                                                                          | en en                                                                                                                | Total                                                                                                                                                                                                                                                                          | Moint                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               | Wedit Di                                       |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|
| SUUDY OF SUDGFOUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>50</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mean                                                                                                                          | 50                                                                                                                   | 10(3)                                                                                                                                                                                                                                                                          | veight                                                                                                                                                                          | IV, Kaliuolii, 95% Cl                                                                                                                                                                                                                                                                                                         | IV, Rando                                      | 111, 95% CI           |
| Z.1.1 MSCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                      | 10                                                                                                                                                                                                                                                                             | 10.000                                                                                                                                                                          | 0.001.007.4.471                                                                                                                                                                                                                                                                                                               |                                                |                       |
| Bhatia 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8                                                                                                                           | 3.5                                                                                                                  | 10                                                                                                                                                                                                                                                                             | 12.0%                                                                                                                                                                           | -0.80 [-3.07, 1.47]                                                                                                                                                                                                                                                                                                           |                                                |                       |
| Jaillard 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.4                                                                                                                           | 4.7                                                                                                                  | 15                                                                                                                                                                                                                                                                             | 6.9%                                                                                                                                                                            | -0.46 [-3.95, 3.03]                                                                                                                                                                                                                                                                                                           |                                                |                       |
| XIe 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.36                                                                                                                          | 3.64                                                                                                                 | 10                                                                                                                                                                                                                                                                             | 8.1%                                                                                                                                                                            | -4.02 [-7.13, -0.91]                                                                                                                                                                                                                                                                                                          |                                                |                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                      | 35                                                                                                                                                                                                                                                                             | <b>27.0</b> %                                                                                                                                                                   | -1.69 [-3.81, 0.43]                                                                                                                                                                                                                                                                                                           |                                                |                       |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 1.34; Cł<br>: Z = 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ni <sup>z</sup> = 3.2<br>(P = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21, df =<br>12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 2 (P =                                                                                                                      | 0.20);                                                                                                               | <b> =</b> 389                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |                                                |                       |
| 2.1.2 MNCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |                                                |                       |
| Jin 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3                                                                                                                           | 1.2                                                                                                                  | 10                                                                                                                                                                                                                                                                             | 20.1%                                                                                                                                                                           | -2.00 [-3.19, -0.81]                                                                                                                                                                                                                                                                                                          |                                                |                       |
| Prasad 2014<br><b>Subtotal (95% CI)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br><b>70</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.9                                                                                                                           | 4.8                                                                                                                  | 60<br><b>70</b>                                                                                                                                                                                                                                                                | 16.7%<br><b>36.8</b> %                                                                                                                                                          | -1.10 [-2.70, 0.50]<br>- <b>1.68 [-2.63, -0.72]</b>                                                                                                                                                                                                                                                                           |                                                | _                     |
| Heterogeneity: Tau <sup>=</sup> =<br>Test for overall effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.00; Cł<br>Z = 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ni <sup>=</sup> = 0.7<br>(P = 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78, df =<br>0006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : 1 (P =                                                                                                                      | 0.38);                                                                                                               | I <b>¤</b> = 0%                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |                                                |                       |
| 2.1.3 Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                      |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                               |                                                |                       |
| Chen 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.7                                                                                                                           | 1.9                                                                                                                  | 15                                                                                                                                                                                                                                                                             | 18.9%                                                                                                                                                                           | -3.20 [-4.52, -1.88]                                                                                                                                                                                                                                                                                                          |                                                |                       |
| Hess 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.2                                                                                                                           | 4.46                                                                                                                 | 62                                                                                                                                                                                                                                                                             | 17.3%                                                                                                                                                                           | 0.10 [-1.42, 1.62]                                                                                                                                                                                                                                                                                                            |                                                | •                     |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                      | 77                                                                                                                                                                                                                                                                             | 36.2%                                                                                                                                                                           | -1.57 [-4.81, 1.66]                                                                                                                                                                                                                                                                                                           |                                                |                       |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 4.92; Ch<br>Z = 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ni <sup>2</sup> = 10<br>(P = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .30, df<br>.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 1 (P :                                                                                                                      | = 0.001                                                                                                              | ); <b> </b> ² = 9                                                                                                                                                                                                                                                              | 10%                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                |                       |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                      | 182                                                                                                                                                                                                                                                                            | <b>100.0</b> %                                                                                                                                                                  | -1.63 [-2.69, -0.57]                                                                                                                                                                                                                                                                                                          |                                                |                       |
| Heterogeneity: Tau <sup>=</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 1.09; Cł<br>: 7 = 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ni <sup>∎</sup> = 14<br>(P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .33, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 6 (P :                                                                                                                      | = 0.03)                                                                                                              | ; <b>I</b> " = 58                                                                                                                                                                                                                                                              | 3%                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                             |                                                |                       |
| Test for subaroup dif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ferences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : Chi <b></b> <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | df = 2 (1                                                                                                                     | <sup>2</sup> = 1.0                                                                                                   | 0), <b> </b> <sup>2</sup> = (                                                                                                                                                                                                                                                  | 0%                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                               | Favours (experimental)                         | Favours (control)     |
| Test for subaroup dif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ferences:<br>Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : Chi <sup>2</sup> =<br>m Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | df = 2 (1<br>C                                                                                                                | ⊃ = 1.0<br>ontrol                                                                                                    | 0). <b> </b> ª = (                                                                                                                                                                                                                                                             | 0%                                                                                                                                                                              | Mean Difference                                                                                                                                                                                                                                                                                                               | Favours (experimental)<br>Mean Di              | fference              |
| Test for subaroup dif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ferences:<br>Ste<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : Chi <sup>2</sup> =<br>m Cell<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00.<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | df = 2 (1<br>C<br>Mean                                                                                                        | ° = 1.0<br>ontrol<br>SD                                                                                              | 0).   <b>ª</b> = (<br>Total                                                                                                                                                                                                                                                    | 0%<br>Weight                                                                                                                                                                    | Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                                                                         | Pavours (experimental)<br>Mean Di<br>IV, Rando | fference<br>m. 95% Cl |
| Study or Subgroup<br>2.1.1 MSCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ferences:<br>Ste<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thi <sup>2</sup> =<br>Thi <sup>2</sup> =<br>Thi <sup>2</sup> =<br>This<br>This<br>This<br>This<br>This<br>This<br>This<br>This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | df = 2 (1<br>C<br><u>Mean</u>                                                                                                 | ° = 1.0<br>ontrol<br>SD                                                                                              | 0),   <b>ª</b> = 1<br>Total                                                                                                                                                                                                                                                    | 0%<br>Weight                                                                                                                                                                    | Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                                                                         | Mean Di<br>Nean Di                             | fference<br>m. 95% Cl |
| Study or Subgroup<br>2.1.1 MSCs<br>Bhatia 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ferences:<br>Ste<br><u>Mean</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : Chi <sup>≇</sup> =<br>m Cell<br><u>SD</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00.1<br><u>Total</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | df = 2 (1<br>C<br><u>Mean</u><br>2 8                                                                                          | P = 1.0<br>ontrol<br><u>SD</u>                                                                                       | 0).   <b>²</b> = 1<br><u>Total</u><br>10                                                                                                                                                                                                                                       | 0%<br><u>Weight</u><br>12.7%                                                                                                                                                    | Mean Difference<br><u>IV, Random, 95% Cl</u>                                                                                                                                                                                                                                                                                  | Mean Di<br>IV. Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup<br>2.1.1 MSCs<br>Bhatia 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ferences:<br>Ste<br>Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1 = 0.<br>: Chi <sup>₹</sup> =<br><b>m Cell</b><br><u>SD</u><br>1.1<br>5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | df = 2 (1<br>C<br><u>Mean</u><br>2.8<br>9 4                                                                                   | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7                                                                                | 0).   <b>²</b> = 1<br><u>Total</u><br>10                                                                                                                                                                                                                                       | 0%<br>Weight<br>12.7%                                                                                                                                                           | Mean Difference<br>IV, Random, 95% Cl<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 2.02]                                                                                                                                                                                                                                           | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup<br>2.1.1 MSCs<br>Bhatia 2018<br>Jaillard 2020<br>Via 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 = 3.91<br>ferences:<br><u>Ste</u><br><u>Mean</u><br>2<br>8.94<br>3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : Chi <sup>₽</sup> =<br>m Cell<br><u>SD</u><br>1.1<br>5.2<br>3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | df = 2 (f<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7 36                                                                           | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64                                                                        | 0).   <b>²</b> = 0<br><u>Total</u><br>10<br>15<br>10                                                                                                                                                                                                                           | 0%<br><u>Weight</u><br>12.7%<br>6.4%<br>7.7%                                                                                                                                    | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 L7 13 -0.041                                                                                                                                                                                                              | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup dif<br>Study or Subgroup<br>2.1.1 MSCs<br>Bhatia 2018<br>Jaillard 2020<br>Xie 2016<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 = 3.91<br>ferences:<br><u>Mean</u><br>2<br>8.94<br>3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>10<br>16<br>12<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | df = 2 (f<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36                                                                           | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64                                                                        | 0).   <sup>2</sup> = 1<br><u>Total</u><br>10<br>15<br>10<br>35                                                                                                                                                                                                                 | Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%                                                                                                                                        | Mean Difference<br><u>IV, Random, 95% Cl</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 L3 81 0 43]                                                                                                                                                                                       | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup dif<br>Study or Subgroup<br>2.1.1 MSCs<br>Bhatia 2018<br>Jaillard 2020<br>Xie 2016<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 = 3.31<br>ferences:<br><u>Mean</u><br>2<br>8.94<br>3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (r = 0.<br>: Chi <sup>2</sup> =<br>m Cell<br><u>SD</u><br>1.1<br>5.2<br>3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10<br>10<br>10<br>16<br>12<br>38<br>21 df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | df = 2 (l<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36                                                                           | P = 1.0<br>ontrol<br><u>SD</u><br>3.5<br>4.7<br>3.64<br>0.20):                                                       | 0).   <sup>2</sup> = 1<br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>  <sup>2</sup> = 288                                                                                                                                                                                  | 12.7%<br>6.4%<br>7.7%<br>26.8%                                                                                                                                                  | Mean Difference<br>N, Random, 95% Cl<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]                                                                                                                                                                                             | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup dif<br>Study or Subgroup dif<br>2.1.1 MSCs<br>Bhatia 2018<br>Jaillard 2020<br>Xie 2016<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 = 3.31<br>ferences:<br><b>Ste</b><br><u>Mean</u><br>2<br>8.94<br>3.34<br>= 1.34; Ch<br>: Z = 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( $\Gamma = 0.$<br>: Chi <sup>2</sup> =<br><b>m Cell</b><br><b>SD</b><br>1.1<br>5.2<br>3.79<br>hi <sup>2</sup> = 3.2<br>( $P = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>10<br>10<br>16<br>12<br>38<br>21, df =<br>12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | df = 2 (l<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =                                                               | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);                                                              | 0).   <b>"</b> = 1<br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>  <b>7</b> = 389                                                                                                                                                                                          | Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%                                                                                                                                        | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]                                                                                                                                                                                     | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup dif<br>Study or Subgroup<br>2.1.1 MSCs<br>Bhatia 2018<br>Jaillard 2020<br>Xie 2016<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect<br>2.1.2 MNCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 = 0.01<br>ferences:<br><b>Ste</b><br><u>8.94</u><br>3.34<br>= 1.34; Ct<br>Z = 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(P = 0.1)^{(1)}$<br>$(P = 0.1)^{(1)}$<br>$(P = 0.1)^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>16<br>12<br>38<br>21, df =<br>12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | df = 2 (1<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =                                                               | P = 1.0<br>ontrol<br><u>SD</u><br>3.5<br>4.7<br>3.64<br>0.20);                                                       | 0).   <b>²</b> =  <br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>  <b>²</b> = 389                                                                                                                                                                                          | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>%                                                                                                                             | Mean Difference<br>IV, Random, 95% CI<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]                                                                                                                                                                                            | Mean Di<br>IV. Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 = 0.01<br>ferences:<br>Ste<br><u>Mean</u><br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (r = 0.)<br>$: Chi^2 =$<br><b>m Cell</b><br><b>5.2</b><br>3.79<br>$hi^2 = 3.2$<br>(P = 0.)<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total<br>10<br>10<br>16<br>12<br>38<br>21, df =<br>12)<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | df = 2 (1<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3                                                        | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2                                                       | 0).   <b>"</b> =  <br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>  <b>²</b> = 389<br>10                                                                                                                                                                                    | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>6<br>27.7%                                                                                                                    | Mean Difference<br>N, Random, 95% Cl<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]                                                                                                                                                                     | Mean Di<br>IV. Rando                           | fference<br>m. 95% Cl |
| Test for subgroup dif         Study or Subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.2 MNCs         Jin 2017         Prasad 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rerences:<br>Ste<br><u>Mean</u><br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (r = 0.)<br>$: Chi^2 =$<br><b>m Cell</b><br><b>5.2</b><br>3.79<br>$hi^2 = 3.2$<br>(P = 0.)<br>1.5<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>10<br>10<br>16<br>12<br>38<br>21, df =<br>12)<br>10<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | df = 2 (1<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9                                                 | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8                                                | 0).   <sup>2</sup> = 1<br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>  <sup>2</sup> = 389<br>10<br>60                                                                                                                                                                      | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>27.7%<br>20.4%                                                                                                                | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]                                                                                                                                      | Mean Di<br>IV. Rando                           | fference<br>m. 95% Cl |
| Test for subaroup dif         Study or Subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ferences:<br>Ste<br><u>Mean</u><br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (P = 0.1)<br>(P                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>16<br>12<br>38<br>21, df =<br>12)<br>10<br>60<br><b>70</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | df = 2 (1<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9                                                 | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8                                                | 0).   <sup>2</sup> = 1<br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>  <sup>2</sup> = 389<br>10<br>60<br><b>70</b>                                                                                                                                                         | Weight           12.7%           6.4%           7.7%           26.8%           %           27.7%           20.4%           48.1%                                                | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]                                                                                                              | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Study or Subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect                                                                                                                                                                                                                                                                                                          | 2 = 3.81<br>ferences:<br>Ste<br><u>Mean</u><br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8<br>= 0.00; Ct<br>Z = 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (r = 0.7) $(r = 0.7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total<br>10<br>16<br>12<br>38<br>21, df=<br>12)<br>10<br>60<br>70<br>78, df=<br>0006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | df = 2 (f<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9<br>: 1 (P =                                     | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.38);                                      | 0).   <sup>2</sup> = 1<br>10<br>15<br>10<br>35<br>  <sup>2</sup> = 389<br>10<br>60<br>70<br>  <sup>2</sup> = 0%                                                                                                                                                                | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>6<br>27.7%<br>20.4%<br>48.1%                                                                                                  | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]                                                                                                              | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Test for subaroup dif         Test for subaroup dif         Study or Subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.3 Others                                                                                                                                                                                                                                                                                                                                                                                     | 2 = 3.81<br>ferences:<br><b>Ste</b><br><b>Mean</b><br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8<br>= 0.00; Ct<br>Z = 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P = 0.7)<br>(P = 0.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total           10           16           12           38           21, df =           12)           10           60           70           78, df =           0006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | df = 2 (f<br>C<br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9<br>: 1 (P =                                     | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.38);                                      | 0).   <sup>2</sup> = 1<br>10<br>15<br>10<br><b>35</b><br>  <sup>2</sup> = 389<br>10<br>60<br><b>70</b><br>  <sup>2</sup> = 0%                                                                                                                                                  | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>6<br>27.7%<br>20.4%<br>48.1%                                                                                                  | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]                                                                                                              | Mean Di<br>IV. Rando                           | fference<br>m. 95% Cl |
| Test for subgroup         Test for subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.3 Others         Chen 2014                                                                                                                                                                                                                                                                                                                                                                                                     | 2 = 3.81<br>ferences:<br><b>Ste</b><br><u>Mean</u><br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8<br>= 0.00; Ct<br>Z = 3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (r = 0.1)<br>$: Chi^2 = m Cell SD = 1.1 = 5.2 = 3.79 = 3.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.10 = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>16<br>12<br>38<br>21, df =<br>12)<br>10<br>60<br>70<br>78, df =<br>0006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | df = 2 (f<br><u>C</u><br><u>2.8</u><br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9<br>: 1 (P =<br>8.7                               | <pre>&gt; = 1.0 ontrol SD 3.5 4.7 3.64 0.20); 1.2 4.8 0.38); 1.9</pre>                                               | 0).   <sup>2</sup> = 1<br>Total<br>10<br>15<br>10<br>35<br>  <sup>2</sup> = 389<br>10<br>60<br>70<br>  <sup>2</sup> = 0%                                                                                                                                                       | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>6<br>27.7%<br>20.4%<br>48.1%<br>25.0%                                                                                         | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52] -1.88]                                                                                      | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Test for subgroup         Test for subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.3 Others         Chen 2014         Hess 2017                                                                                                                                                                                                                    | 2 = 3.81<br>ferences:<br>Ste<br>Mean<br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8<br>= 0.00; Ct<br>Z = 3.45<br>5.5<br>4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(C = 0)^{(1)} = (C = 0)^{(1)$                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00.1<br>10<br>10<br>16<br>12<br>38<br>21, df =<br>12)<br>10<br>60<br>70<br>78, df =<br>0006)<br>15<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | df = 2 (f<br><u>C</u><br><u>Mean</u><br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9<br>: 1 (P =<br>8.7<br>4.2                | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.39);<br>1.9<br>4.46                       | 0).   <sup>2</sup> = 1<br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>  <sup>2</sup> = 389<br>10<br>60<br><b>70</b><br>  <sup>2</sup> = 0%<br>15<br>62                                                                                                                      | Weight           12.7%           6.4%           7.7%           26.8%           %           27.7%           20.4%           48.1%           25.0%           0.9%                 | Mean Difference<br>IV, Random, 95% CI<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]                                                                       | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Test for subgroup         Test for subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                         | 2 = 3.81<br>ferences:<br><b>Ste</b><br><u>Mean</u><br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8<br>= 0.00; Ct<br>Z = 3.45<br>5.5<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (r = 0.1) + (r =                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00.1<br>0.00.1<br>10<br>16<br>12<br>38<br>21, df =<br>12)<br>10<br>60<br>70<br>78, df =<br>0006)<br>15<br>67<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | df = 2 (f<br><u>C</u><br><u>2.8</u><br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9<br>: 1 (P =<br>8.7<br>4.2                        | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.39);<br>1.9<br>4.46                       | 0).   <sup>2</sup> = 1<br><u>Total</u><br>10<br>15<br>10<br><b>35</b><br>1 <sup>2</sup> = 389<br>10<br>60<br><b>70</b><br>  <sup>2</sup> = 0%<br>15<br>62<br>15<br>62<br>15                                                                                                    | Weight           12.7%           6.4%           7.7%           26.8%           6           27.7%           20.4%           48.1%           25.0%           0.0%           25.0% | Mean Difference<br><u>IV, Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]<br>-3.20 [-4.52, -1.88]                                        | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Test for subgroup         Test for subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                             | 2 = 0.01<br>ferences:<br>Ste<br>Mean<br>2<br>8.94<br>3.34<br>= 1.34; Ct<br>Z = 1.56<br>4.3<br>4.8<br>= 0.00; Ct<br>Z = 3.45<br>5.5<br>4.3<br>2<br>5.5<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (r = 0) (c = 10)<br>(c = | 0.00.1<br>0.00.1<br>10<br>16<br>12<br><b>38</b><br>21, df =<br>12)<br>10<br>60<br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>70</b><br><b>75</b><br><b>67</b><br><b>15</b><br><b>67</b><br><b>15</b><br><b>67</b><br><b>15</b><br><b>67</b><br><b>15</b><br><b>67</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b><br><b>15</b> | df = 2 (f<br><u>C</u><br><u>9.4</u><br>7.36<br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9<br>: 1 (P =<br>8.7<br>4.2         | <sup>D</sup> = 1.0<br>ontrol<br><u>SD</u><br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.38);<br>1.9<br>4.46     | 0).   <sup>2</sup> = 1<br>Total<br>10<br>15<br>10<br>35<br>1 <sup>2</sup> = 389<br>10<br>60<br>70<br>1 <sup>2</sup> = 0%<br>15<br>62<br>15                                                                                                                                     | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>27.7%<br>20.4%<br>48.1%<br>25.0%<br>25.0%                                                                                     | Mean Difference<br><u>IV. Random, 95% CI</u><br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]<br>-3.20 [-4.52, -1.88]                                        | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Test for subgroup         Test for subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% CI)         Heterogeneity: Not ar         Test for overall effect:                                                                                                                                                                                                                                                                                        | Z = 0.01           ferences:           Ste           Mean           2           8.94           3.34           = 1.34; Ct           Z = 1.56           4.3           4.8           = 0.00; Ct           Z = 3.45           5.5           4.3           5.5           4.3           5.5           4.3                                                                                                                                                                                                                                                                                                                 | (P < 0.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00.1<br>10<br>10<br>16<br>12<br>38<br>21, df=<br>12)<br>10<br>60<br>70<br>76, df=<br>0006)<br>15<br>67<br>15<br>000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | df = 2 (f<br><u>C</u><br><u>9.4</u><br>7.36<br>2.8<br>9.4<br>7.36<br>2.7<br>6.3<br>5.9<br>1 (P =<br>8.7<br>4.2<br>)           | <sup>D</sup> = 1.0<br>ontrol<br><u>SD</u><br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.38);<br>1.9<br>4.46     | 0).   <sup>2</sup> = 1<br>Total<br>10<br>15<br>10<br>35<br>  <sup>2</sup> = 389<br>10<br>60<br>70<br>  <sup>2</sup> = 0%<br>15<br>62<br>15<br>62<br>15                                                                                                                         | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>27.7%<br>20.4%<br>48.1%<br>25.0%<br>0.0%<br>25.0%                                                                             | Mean Difference<br>IV, Random, 95% CI<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]<br>-3.20 [-4.52, -1.88]                                               | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Test for subaroup dif         Study or Subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% Cl)         Heterogeneity: Not agrees         Test for overall effect:         Subtotal (95% Cl)         Heterogeneity: Not agrees         Test for overall effect:         Total (95% Cl) | $\frac{1}{2} = 3.81$ ferences: <b>Ste Mean</b> 2 8.94 3.34 = 1.34; Cf 2 = 1.56 4.3 4.8 = 0.00; Cf Z = 3.45 5.5 4.3 oplicable Z = 4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P < 0) $(P < 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>10<br>10<br>16<br>12<br>38<br>21, df =<br>12)<br>10<br>60<br>70<br>70<br>70<br>70<br>70<br>15<br>67<br>15<br>000001<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | df = 2 (f<br>C<br>Mean<br>2.8<br>9.4<br>7.36<br>: 2 (P =<br>6.3<br>5.9<br>: 1 (P =<br>8.7<br>4.2<br>)                         | <sup>a</sup> = 1.0<br>ontrol<br><u>SD</u><br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.38);<br>1.9<br>4.46     | 0).   <sup>2</sup> = 1<br>Total<br>10<br>15<br>10<br>35<br>  <sup>2</sup> = 389<br>10<br>60<br>70<br>  <sup>2</sup> = 0%<br>15<br>62<br>15<br>62<br>15<br>120                                                                                                                  | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>6<br>27.7%<br>20.4%<br>48.1%<br>25.0%<br>0.0%<br>25.0%<br>100.0%                                                              | Mean Difference<br>N, Random, 95% CI<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]<br>-3.20 [-4.52, -1.88]                                                | Mean Di<br>IV. Rando                           | fference<br>m. 95% Cl |
| Test for subgroup         Test for subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% Cl)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% Cl)         Heterogeneity: Not a;         Test for overall effect:         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% Cl)         Heterogeneity: Not a;         Test for overall effect:         Total (95% Cl)         Heterogeneity: Tau <sup>2</sup> =                                                                     | $\frac{1}{2} = 3.51$ ferences: <b>Ste Mean</b> 2 8.94 3.34 = 1.34; Ct Z = 1.56 4.3 4.8 = 0.00; Ct Z = 3.45 5.5 4.3 oplicable Z = 4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (P < 0) $(P < 0)$ $(P < 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00.1<br>0.00.1<br>10<br>16<br>12<br>38<br>21, df=<br>12)<br>10<br>60<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | df = 2 (l)  C  Mean  2.8  9.4  7.36 $2 (P =6.35.91 (P =8.74.2)4.2$                                                            | P = 1.0<br>ontrol<br>SD<br>3.5<br>4.7<br>3.64<br>0.20);<br>1.2<br>4.8<br>0.38);<br>1.9<br>4.46                       | 0).   <sup>2</sup> = 1<br>Total<br>10<br>15<br>10<br>35<br>  <sup>2</sup> = 389<br>10<br>60<br>70<br>15<br>62<br>15<br>62<br>15<br>62<br>15<br>62<br>15<br>62<br>15<br>62<br>15<br>62<br>15<br>15<br>10<br>70<br>8<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>27.7%<br>20.4%<br>48.1%<br>25.0%<br>0.0%<br>25.0%<br>0.0%<br>25.0%                                                            | Mean Difference<br>IV, Random, 95% CI<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]<br>-3.20 [-4.52, -1.88] | Mean Di<br>IV, Rando                           | fference<br>m. 95% Cl |
| Test for subgroup         Test for subgroup         2.1.1 MSCs         Bhatia 2018         Jaillard 2020         Xie 2016         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.2 MNCs         Jin 2017         Prasad 2014         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect:         2.1.3 Others         Chen 2014         Hess 2017         Subtotal (95% CI)         Heterogeneity: Not ar         Test for overall effect:         Notal (95% CI)         Heterogeneity: Not ar         Test for overall effect:         Total (95% CI)         Heterogeneity: Not ar         Test for overall effect:         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> =                                           | Z = 0.81           ferences:           Ste           Mean           2           8.94           3.34           = 1.34; Ct           Z = 1.56           4.3           4.8           = 0.00; Ct           Z = 3.45           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           4.3           5.5           6.4, 3           6.4, 5, Ct | (P < 0) $(P = 7,, P)$ $(P = 7,, P)$ $(P = 0,, P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00.1<br>0.00.1<br>10<br>16<br>12<br>38<br>21, df=<br>12)<br>10<br>60<br>70<br>76, df=<br>00001<br>123<br>75, df=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | df = 2 (f<br><u>C</u><br><u>9.4</u><br>7.36<br>2.8<br>9.4<br>7.36<br>2.7<br>6.3<br>5.9<br>1 (P =<br>8.7<br>4.2<br>)<br>5 (P = | <pre>P = 1.0<br/>ontrol<br/>SD<br/>3.5<br/>4.7<br/>3.64<br/>0.20);<br/>1.2<br/>4.8<br/>0.38);<br/>1.9<br/>4.46</pre> | 0).   <sup>2</sup> = 1<br>Total<br>10<br>15<br>10<br>35<br>  <sup>2</sup> = 389<br>10<br>60<br>70<br>1 <sup>5</sup><br>62<br>15<br>62<br>15<br>62<br>15<br>120<br>  <sup>2</sup> = 359                                                                                         | 0%<br>Weight<br>12.7%<br>6.4%<br>7.7%<br>26.8%<br>27.7%<br>20.4%<br>48.1%<br>25.0%<br>0.0%<br>25.0%<br>100.0%<br>6                                                              | Mean Difference<br>IV, Random, 95% CI<br>-0.80 [-3.07, 1.47]<br>-0.46 [-3.95, 3.03]<br>-4.02 [-7.13, -0.91]<br>-1.69 [-3.81, 0.43]<br>-2.00 [-3.19, -0.81]<br>-1.10 [-2.70, 0.50]<br>-1.68 [-2.63, -0.72]<br>-3.20 [-4.52, -1.88]<br>0.10 [-1.42, 1.62]<br>-3.20 [-4.52, -1.88]<br>-2.02 [-2.96, -1.08]                       | Mean Di<br>N, Rando                            | fference<br>m. 95% Cl |

anti-inflammatory effects, neuroprotective effects, promotion of axonal regeneration, promotion of angiogenesis, and other poststroke processes (Fig. 7).<sup>[42,43]</sup> Currently, the timing of stem cell infusion remains uncertain, and stem cell infusion is usually at the minimum dose in the safe range obtained from dose gradient experiments.<sup>[44]</sup> The main methods of stem cell therapy are intravenous and arterial infusions. However, the optimal route of administration remains to be determined. Meanwhile, bone MSCs are the most commonly used stem cells in published studies.<sup>[45]</sup> This may be due to their overall physiological characteristics, including easy access, sufficient autologous sources, low immunogenicity, and self-renewal.<sup>[46,47]</sup> It is also the most efficient stem cell to produce exosomes, an important substance for stem cells to exert their effects.<sup>[48]</sup> Exosomes are speculated to be able to transmit proteins, genetic information, and cytokines to target cells, thereby regulating the key physiological and pathological activities of target cells.<sup>[49]</sup>

A recent meta-analysis of a clinical study on stem cells in the treatment of ischemic stroke revealed that the application of stem cells can improve neurological deficits and activities of daily living in patients with ischemic stroke; however, its benefits remain limited.<sup>[50]</sup> Therefore, our meta-analysis further analyzed the correlation between stem cell therapy for ischemic stroke and the prognosis (neurological function recovery, quality of life, and mortality) of patients. All 13 studies included in the present analysis were RCTs, which are currently the highest-level .

|                                                            | Ste                     | m Cell                             |                      | Control     |                       |        | Mean Difference    | Mean Difference                           |
|------------------------------------------------------------|-------------------------|------------------------------------|----------------------|-------------|-----------------------|--------|--------------------|-------------------------------------------|
| Study or Subgroup<br>3.1.1 MSCs                            | Mean                    | SD T                               | otal Mear            | <u>1 SE</u> | ) Total               | Weight | IV, Random, 95%    | CI IV, Random, 95% CI                     |
| Bang 2005                                                  | 62                      | 20.8                               | 10 42.               | 6 23.6      | 5 20                  | 23.3%  | 19.40 [2.87, 35.   | 93]                                       |
| Jaillard 2020                                              | 80.63                   | 30.87                              | 16 77.8              | 5 25.4      | 14                    | 18.0%  | 2.77 [-17.38, 22.  | 92]                                       |
| Xie 2016                                                   | 59.55                   | 20.67                              | 12 53.               | 5 13.13     | 3 10                  | 27.6%  | 6.05 [-8.20, 20.   | 30]                                       |
| Subtotal (95% CI)                                          |                         |                                    | 38                   |             | 44                    | 68.9%  | 9.74 [0.15, 19.3   | 33]                                       |
| Heterogeneity: Tau <sup>2</sup> =                          | 1.09; Chi               | i <sup>2</sup> = 2.03,             | df = 2 (P =          | 0.36); P    | = 1%                  |        |                    | 2                                         |
| Test for overall effect: .                                 | Z=1.99 (                | (P = 0.05                          | )                    |             |                       |        |                    |                                           |
| 3.1.2 MNCs                                                 |                         |                                    |                      |             |                       |        |                    |                                           |
| Jin 2017                                                   | 87.5                    | 7.6                                | 10 63.               | 3 18.9      | 10                    | 31.1%  | 24.20 [11.57, 36.  | 83]                                       |
| Prasad 2014                                                | 63.9                    | 29.6                               | 60 63.0              | 29.6        | 0 0                   | 24 40/ | Not estima         |                                           |
| Subioral (95% CI)                                          | rlianhla                |                                    | 10                   |             | 10                    | 31.170 | 24.20 [11.57, 30.0 | 55]                                       |
| Test for overall effect:                                   | Z = 3.76 (              | (P = 0.00                          | 02)                  |             |                       |        |                    |                                           |
| Total (95% CI)                                             |                         |                                    | 108                  |             | 54                    | 100.0% | 14.22 [3.95, 24.4  | 48]                                       |
| Heterogeneity: Tau <sup>2</sup> =                          | 46.62; CI               | hi= 5.24                           | 4, df = 3 (P         | = 0.15);    | 1= 43%                |        |                    |                                           |
| Test for overall effect:                                   | Z = 2.71 (              | (P = 0.00)                         | (7)                  |             |                       |        |                    | -50 -25 0 25 5                            |
| Test for subaroup diffe                                    | erences:                | Chi <sup>2</sup> = 3.              | 19 df = 1 (          | P = 0.07    | ). <b>I</b> ² = 68.   | 7%     |                    | Favours (experimental) Favours (control)  |
| <u> </u>                                                   | Sten                    | n Cell                             | Conti                | ol          |                       | 0      | dds Ratio          | Odds Ratio                                |
| Study or Subgroup                                          | Event                   | s lota                             | Events               | Total       | Weight                | M-H, F | Random, 95% Cl     | M-H, Random, 95% Cl                       |
| 3.2.1 MSCs                                                 |                         |                                    |                      |             |                       |        |                    |                                           |
| Bang 2005                                                  |                         | 0 5                                | 5 0                  | 25          |                       |        | Not estimable      |                                           |
| Chung 2021                                                 |                         | 0 39                               | 9 0                  | 15          |                       |        | Not estimable      |                                           |
| Jaillard 2020                                              |                         | 0 16                               | 6 1                  | 15          | 3.6%                  |        | 0.29 [0.01, 7.76]  | •                                         |
| Lee 2010                                                   |                         | 4 16                               | 5 21                 | 36          | 22.6%                 |        | 0.24 [0.06, 0.88]  |                                           |
| Xie 2016                                                   |                         | 0 12                               | 2 0                  | 10          |                       |        | Not estimable      |                                           |
| Subtotal (95% CI)                                          |                         | 88                                 | 3                    | 101         | 26.3%                 |        | 0.25 [0.07, 0.83]  |                                           |
| Total events                                               |                         | 4                                  | 22                   |             |                       |        |                    |                                           |
| Heterogeneity: Tau <sup>a</sup><br>Test for overall effect | = 0.00; 0<br>t: Z = 2.2 | Chi <sup>#</sup> = 0.1<br>6 (P = 0 | 01, df = 1 (<br>.02) | (P = 0.9    | 1); I <b>≖</b> = 0'   | %      |                    |                                           |
| 3.2.2 MNCs                                                 |                         |                                    |                      |             |                       |        |                    |                                           |
| Bhasin 2016                                                |                         | 0 10                               | 0 0                  | 10          |                       |        | Not estimable      |                                           |
| Bhatia 2018                                                |                         | 1 10                               | 2                    | 10          | 5.8%                  |        | 0.44 [0.03, 5.88]  |                                           |
| Jin 2017                                                   |                         | 1 10                               | 1                    | 10          | 4.6%                  | 1      | .00 (0.05, 18,57)  |                                           |
| Prasad 2014                                                |                         | 5 59                               | 3 5                  | 60          | 23.2%                 |        | 1.02 [0.28, 3.72]  |                                           |
| Subtotal (95% CI)                                          |                         | 89                                 | )                    | 90          | 33.6%                 |        | 0.88 [0.30, 2.58]  |                                           |
| Total events                                               |                         | 7                                  | 8                    |             |                       |        |                    |                                           |
| Heterogeneity: Tau <sup>2</sup>                            |                         | $hi^2 = 0$                         | 33 df = 20           | P = 0.8     | 5) IF = 0             | *      |                    |                                           |
| Test for overall effect                                    | t: Z = 0.2              | 3 (P = 0                           | .82)                 | u – 0.0     | 0/11 = 0              |        |                    |                                           |
| 3.2.3 Others                                               |                         |                                    |                      |             |                       |        |                    |                                           |
| Chen 2014                                                  |                         | 0 15                               | 5 0                  | 0           |                       |        | Not estimable      |                                           |
| Fang 2018-1                                                |                         | 0 5                                | 5 3                  | 6           | 3.7%                  |        | 0.09 [0.00, 2.35]  | • •                                       |
| Fang 2018-2                                                |                         | 0 4                                | 1 3                  | 6           | 3.6%                  |        | 0.11 [0.00, 2.94]  | •                                         |
| Hess 2017                                                  |                         | 5 65                               | 5 9                  | 61          | 29.2%                 |        | 0.48 [0.15, 1.53]  |                                           |
| Savitz 2019                                                |                         | 0 20                               | 3 1                  | 16          | 37%                   |        | 0.18 (0.01. 4.56)  | • • • • • • • • • • • • • • • • • • • •   |
| Subtotal (95% CI)                                          |                         | 118                                | 3                    | 89          | 40.2%                 |        | 0.33 [0.12. 0.88]  |                                           |
| Total events                                               |                         | 5                                  | 16                   |             | 10                    |        |                    |                                           |
| Heterogeneity Tau?                                         | = 0.00.0                | $chi^2 = 1$                        | 60 df= 3 (           | P=06        | 6) <b>F</b> = 0       | *      |                    |                                           |
| Test for overall effect                                    | t: Z = 2.2              | 1 (P = 0)                          | .03)                 | 0.0         | -,, 0                 |        |                    |                                           |
| Total (95% CI)                                             |                         | 295                                | 5                    | 280         | 100.0%                |        | 0.42 [0.23. 0.79]  | •                                         |
| Total events                                               | 1                       | 6                                  | 46                   | STORE AND   |                       |        |                    | 7653                                      |
| Heterogeneity Tauz                                         | = 0.00.0                | hi <sup>2</sup> = 4                | 73 df = 9/           | P = 0.7     | q)   <sup>z</sup> = 0 | %      |                    |                                           |
| Test for overall offeet                                    | - 0.00, C               | Q (P = 0                           | 007)                 | u = 0.7     | 5),1 = 0              | 10     |                    | 0.01 0.1 1 10 10                          |
|                                                            | 2.0                     | -0                                 |                      |             |                       |        |                    | Equation Experimental Equation I controll |

Figure 4. Meta-analysis (A) and sensitivity analysis (B) of the effects of stem cells on ischemic stroke, with National Institute of Health stroke scale.

evidence of evidence-based medicine on this topic.<sup>[51]</sup> The results demonstrated that there were significant differences in the mRS score, NIHSS score, BI score, and mortality, favoring stem cell treatment. This result supports the notion that the use of stem cells can improve the prognosis and quality of life of patients with ischemic stroke.

Stem cells have been used in many preclinical studies and some clinical trials since their development, producing some encouraging results. However, stem cell therapy has not yet translated into clinical practice. Current clinical applications of stem cells have limitations including optimal cell source, preparation of autologous stem cells that fully meet transplantation conditions, dose, time window and route of transplantation, and monitoring and management of adverse events during stem cell transplantation.<sup>[52]</sup> These limitations must be overcome to ensure the safety and efficacy of stem cells. Because of the safety



Figure 5. Meta-analysis of the effects of stem cells on all complications of ischemic stroke (A). Subgroup analysis of the effect of stem cells on complications of ischemic stroke (B).

risk associated with stem cell application and insufficient clinical data, stem cells should be considered carefully and be fully prepared by an experienced clinician.

Our study had several limitations. This study was based on a small number of clinical trials because stem cell therapy has recently made the jump from preclinical animal studies to an experimental clinical setting. Hence, the available literature on this topic is scarce. High heterogeneity existed in the NIHSS and BI outcomes. This may be due to the fact that the basic NIHSS score (3–30), gender (male > female), cerebral ischemia duration

# Table 2

#### Complications reported in the studies included.

| Author                   | Year | Cases | Complications (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bang <sup>[24]</sup>     | 2005 | 1     | Cellulitis (100%)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bhasin <sup>[25]</sup>   | 2016 | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bhatia <sup>[26]</sup>   | 2018 | 4     | New infarct (25%), Death (75%)                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chen <sup>[27]</sup>     | 2014 | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chung <sup>[28]</sup>    | 2021 | 3     | Recurrent stroke or TIA (33.33%), Allergic reactions (33.33%), Systemic complications (33.33%)                                                                                                                                                                                                                                                                                                                                                                         |
| Fang <sup>[29]</sup>     | 2018 | 7     | Seizure (28.57%), Deep vein thrombosis (14.29%), Parkinson's syndrome (14.29%), Arrhythmia (14.29%), Recurrent stroke (14.29%), Cancer (14.29%)                                                                                                                                                                                                                                                                                                                        |
| Hess <sup>[30]</sup>     | 2017 | 123   | Study drug-related (16.26%), Secondary infection (43.90%), Serious adverse events (37.40%)                                                                                                                                                                                                                                                                                                                                                                             |
| Jaillard <sup>[31]</sup> | 2020 | 41    | Death (2.44%), Depression (4.88%), Recurrent ischemic stroke (4.88%), TIA (2.44%), Urinary tract infection (12.20%),<br>Crytpogenic fever (2.44%), Algodystrophia (4.88%), Hip pain(2.44%), Humeral fracture (7.72%), Foot skin infection<br>(2.44%), Epileptic seizures (26.83%), Deep lower limb venous thrombosis (2.44%), Pneumonia (12.20%),<br>Gastrostomy (2.44%), Ankle sprain (2.44%), Atrial flutter (2.44%), Rotator cuff tear (2.44%), Kidney pain (2.44%) |
| Jin <sup>[35]</sup>      | 2017 | 25    | Fever (8%), Pain in puncture site (80%), Pulmonary infection (4%), Death (8%)                                                                                                                                                                                                                                                                                                                                                                                          |
| Lee <sup>[32]</sup>      | 2010 | 47    | Recurrent stroke (6.38%), Myocardial infarction or angina (6.38%), Peripheral artery occlusive disease (2.13%),<br>Infection (pneumonia, urinary tract infection) (25.53%), Acute renal failure (2.13%), Liver enzyme elevation (6.38%),<br>Systemic cancer (2.13%), Mass, benign (4.26%), Seizure (17.02%), Neuropyschological illness (27.66%)                                                                                                                       |
| Prasad <sup>[21]</sup>   | 2014 | 121   | Haematological (24.79%), Hepatic (28.93%), Others (46.28)                                                                                                                                                                                                                                                                                                                                                                                                              |
| Savitz <sup>[33]</sup>   | 2019 | 39    | Mild (38.46%), Moderate (38.46%), Severe (23.07%)                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Xie <sup>[34]</sup>      | 2016 | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

TIA = transient ischemic attack.



(acute, subacute, chronic), stem cell types, stem cell injection dose, drug administration (intra-arterial injection, intravenous injection) and recovery time of the patients included in the studies differed. After the sensitivity analysis, the heterogeneity significantly decreased, but without any change to the significant difference in the overall effect. Stroke of different severity may be associated with different complications, which may also affect the evaluation of efficacy and safety. Different types of stroke may have different treatments other than stem cell therapy, which may affect clinical outcomes and should be a limitation of the present study. In addition, this study protocol was not registered before it started, and records identified from the database was relatively small, which was also a limitation of the present study.

Figure 7 mechanism diagram of stem cell therapy for ischemic stroke.



# 5. Conclusion

Stem cell therapy may reduce mortality and improve the neurological prognosis of ischemic stroke patients. However, due to the different types of stem cells used and the limited data in the reported studies, the safety of clinical applications of stem cells in patients with ischemic stroke must be carefully evaluated. Future randomized controlled trials with large sample sizes from controlled cell sources are warranted to validate this finding.

## **Author contributions**

Conceptualization: Feng Zheng, Hao Yao. Data curation: Xiumei Guo, Chunhui Chen. Formal analysis: Wen Gao. Methodology: Yu Xiong, Chuhan Ke. Project administration: Xinyue Huang. Resources: Yu Xiong, Zhigang Pan. Software: Yu Xiong, Hanlin Zheng. Supervision: Weipeng Hu. Visualization: Hao Yao.

## References

- Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866: 165260.
- [2] Hankey GJ. Long-term outcome after ischaemic stroke/transient ischaemic attack. Cerebrovasc Dis. 2003;16:14–9.
- [3] Herpich F, Rincon F. Management of acute ischemic stroke. Crit Care Med. 2020;48:1654–63.
- [4] Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21:7609.
- [5] Tong DC. Intravenous rt-PA for stroke. Curr Med Res Opin. 2002;18(Suppl 2):s35–43.

- [6] Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518.
- [7] Warach SJ, Dula AN, Milling TJ Jr. Tenecteplase thrombolysis for acute ischemic stroke. Stroke. 2020;51:3440–51.
- [8] Minnerup J, Wersching H, Teuber A, et al.; REVASK Investigators. Outcome after thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: a prospective observational study. Stroke. 2016;47:1584–92.
- [9] Silva GS, Nogueira RG. Endovascular treatment of acute ischemic stroke. Continuum (Minneap Minn). 2020;26:310–31.
- [10] Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol. 2011;7:76–85.
- [11] Chavez LM, Huang SS, MacDonald I, et al. Mechanisms of acupuncture therapy in ischemic stroke rehabilitation: a literature review of basic studies. Int J Mol Sci. 2017;18:2270.
- [12] Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31:2737–46.
- [13] Wanner IB, Deik A, Torres M, et al. A new in vitro model of the glial scar inhibits axon growth. Glia. 2008;56:1691–709.
- [14] Shan Y, Hu J, Lv H, et al. miR-221 exerts neuroprotective effects in ischemic stroke by inhibiting the proinflammatory response. J Stroke Cerebrovasc Dis. 2021;30:105489.
- [15] Cai G, Cai G, Zhou H, et al. Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction. Stem Cell Res Ther. 2021;12:2.
- [16] Su Y, Yuan J, Zhang F, et al. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis. 2019;10:365.
- [17] Deng Y, Chen D, Gao F, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng. 2019;13:71.
- [18] Dong M, Xi G, Keep RF, et al. Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats. Brain Res. 2013;1505:86–92.
- [19] Xiong Y, Song J, Huang X, et al. Exosomes derived from mesenchymal stem cells: novel effects in the treatment of ischemic stroke. Front Neurosci. 2022;16:899887.

- [20] Bhasin A, Srivastava M, Bhatia R, et al. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J Stem Cells Regen Med. 2012;8:181–9.
- [21] Prasad K, Sharma A, Garg A, et al.; InveST Study Group. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45:3618–24.
- [22] Zheng F, Dong Y, Xia P, et al. Is clipping better than coiling in the treatment of patients with oculomotor nerve palsies induced by posterior communicating artery aneurysms? A systematic review and meta-analysis. Clin Neurol Neurosurg. 2017;153:20–6.
- [23] Liu CW, Liu B, Ye W, et al. [Carotid endarterectomy versus carotid stenting: a prospective randomized trial]. Zhonghua Wai Ke Za Zhi. 2009;47:267–70.
- [24] Bang OY. Intravenous administration of autoserum-cultured autologous mesenchymal stem cells in ischemic stroke: a single center, randomized, open label, prospective, phase 3 study. 2012. Available at: https://www. cochranelibrary.com/central/doi/10.1002/central/CN-01614189/full.
- [25] Bhasin A, Srivastava MVP, Mohanty S, et al. Paracrine mechanisms of intravenous bone marrow-derived mononuclear stem cells in chronic ischemic stroke. Cerebrovasc Dis Extra. 2016;6:107–19.
- [26] Bhatia V, Gupta V, Khurana D, et al. Randomized assessment of the safety and efficacy of intra-arterial infusion of autologous stem cells in subacute ischemic stroke. AJNR Am J Neuroradiol. 2018;39:899–904.
- [27] Chen DC, Lin SZ, Chou DY, et al. Intracerebral implantation of autologous (CD34) in old ischemic stroke patients: aphase ii randomized controlled trial. Conference Abstract. Cerebrovasc Dis. 2014;38:7.
- [28] Chung JW, Chang WH, Bang OY, et al.; STARTING-2 Collaborators. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke. Neurology. 2021;96:e1012–23.
- [29] Fang J, Guo Y, Tan S, et al. Autologous endothelial progenitor cells transplantation for acute ischemic stroke: a 4-year follow-up study. Stem Cells Transl Med. 2019;8:14–21.
- [30] Hess DC, Wechsler LR, Clark WM, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16:360–8.
- [31] Jaillard A, Hommel M, Moisan A, et al.; (for the ISIS-HERMES Study Group). Autologous mesenchymal stem cells improve motor recovery in subacute ischemic stroke: a randomized clinical trial. Transl Stroke Res. 2020;11:910–23.
- [32] Lee JS, Hong JM, Moon GJ, et al.; STARTING collaborators. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28:1099–106.
- [33] Savitz SI, Yavagal D, Rappard G, et al. A phase 2 randomized, sham-controlled trial of internal carotid artery infusion of autologous bone marrow-derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-Stroke). Circulation. 2019;139:192–205.
- [34] Xie B, Gu P, Wang W, et al. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy. Am J Transl Res. 2016;8:3241–50.

- [35] Jin Y, Ying L, Yu G, et al. Analysis of the long-term effect of bone marrow mononuclear cell transplantation for the treatment of cerebral infarction [Article]. Int J Clin Exp Med. 2017;10:3059–68.
- [36] Ghandehari K. Challenging comparison of stroke scales. J Res Med Sci. 2013;18:906–10.
- [37] Kasner SE. Clinical interpretation and use of stroke scales. Lancet Neurol. 2006;5:603–12.
- [38] Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22.
- [39] Imam YZ, D'Souza A, Malik RA, et al. Secondary stroke prevention: improving diagnosis and management with newer technologies. Transl Stroke Res. 2016;7:458–77.
- [40] Zhang Z, Zou X, Zhang R, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 2021;13:3060–79.
- [41] Li G, Xiao L, Qin H, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion. Cell Cycle. 2020;19:1022–35.
- [42] Yoo J, Kim HS, Hwang DY. Stem cells as promising therapeutic options for neurological disorders. J Cell Biochem. 2013;114:743–53.
- [43] Hu Z, Yuan Y, Zhang X, et al. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate oxygen-glucose deprivation/ reperfusion-induced microglial pyroptosis by promoting FOXO3adependent mitophagy. Oxid Med Cell Longev. 2021;2021:6219715.
- [44] Levy ML, Crawford JR, Dib N, et al. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke. Stroke. 2019;50:2835–41.
- [45] Duan S, Wang F, Cao J, et al. Exosomes derived from MicroRNA-146a-5p-enriched bone marrow mesenchymal stem cells alleviate intracerebral hemorrhage by inhibiting neuronal apoptosis and microglial M1 polarization. Drug Des Devel Ther. 2020;14:3143–58.
- [46] Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.
- [47] Kuang Y, Zheng X, Zhang L, et al. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles. 2020;10:e12024.
- [48] Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cellsderived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics. 2018;8:1399–410.
- [49] De Jong OG, Van Balkom BW, Schiffelers RM, et al. Extracellular vesicles: potential roles in regenerative medicine. Front Immunol. 2014;5:608.
- [50] Li Z, Dong X, Tian M, et al. Stem cell-based therapies for ischemic stroke: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther. 2020;11:252.
- [51] Pocock SJ, McMurray JJ, Collier TJ. Making sense of statistics in clinical trial reports: part 1 of a 4-part series on statistics for clinical trials. J Am Coll Cardiol. 2015;66:2536–49.
- [52] Zhou L, Zhu H, Bai X, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Res Ther. 2022;13:195.