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ABSTRACT

STUDY QUESTION: To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future
clinical application?

SUMMARY ANSWER: Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting
the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings.

WHAT IS KNOWN ALREADY: Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a num-
ber of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been
tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites
(homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities.

STUDY DESIGN, SIZE, DURATION: Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses,
we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords:
‘mesenchymal stem cells’” AND ‘ovarian follicles’ OR ‘ovarian tissue culture’ OR ‘ovarian follicle culture’ OR ‘cumulus oocyte com-
plex’. Only peer-reviewed published articles written in English were included.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The primary outcome for the experimental strategies was evaluation of the ovar-
ian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associ-
ated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels,
oocyte growth and maturation rates, and of course pregnancy outcomes.

MAIN RESULTS AND THE ROLE OF CHANCE: Preclinical studies exploring MSCs from different animal origins and tissue sources in
specific conditions were selected (n=112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles;
ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline.
Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models
and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder
cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future
clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian
tissue in experimental animal models.

LIMITATIONS, REASONS FOR CAUTION: While preclinical results look promising in terms of protecting the ovarian reserve in differ-
ent experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models),
there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting.
WIDER IMPLICATIONS OF THE FINDINGS: All gathered data on the one hand show that regenerative medicine techniques are
quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive med-
icine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively
used in different clinical applications.
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WHAT DOES THIS MEAN FOR PATIENTS?

‘Regenerative medicine’ describes a potential clinical approach for managing various pathological conditions (i.e. diseases or in-
jury) that have no current treatment options, including many in the field of human reproduction. The techniques involved are
based on the use of mesenchymal stem cells (MSCs), which are non-specialized cells that can give rise to infinitely more cells of
the same type, as well as other cell types. Stem cells have the potential to regenerate and produce signals that promote wound
healing (i.e. tissue regeneration) in different organs. For this reason, various experimental strategies are under development to ex-
ploit the ability of stem cells to protect or restore fertility. More specifically, stem cells may help protect the ovary (and the fol-
licles/eggs it contains) against different types of injury, caused either by the aging process or use of chemotherapy after a cancer
diagnosis. Both conditions significantly decrease a woman’s fertility and chance of pregnancy. Would MSC infusion or localized
therapy help repair damaged ovaries? We undertook a careful review of all studies that investigated any strategy using MSCs in ei-
ther animal models or human studies, to provide evidence that MSCs could improve fertility outcomes. Studies that evaluated
‘ovarian reserve’—that is the reproductive potential left within a woman'’s two ovaries based on number and quality of eggs—were
our primary interest. The results showed that different types of MSCs have been tested in attempts to enhance fertility in various
contexts. Among these, they improve follicle survival and growth, and are also able to reverse chemotherapy-induced ovarian
damage and improve follicle pool survival by boosting ovarian re-growth of blood vessels. Based on recently gathered data, studies
in regenerative medicine are yielding encouraging results in terms of restoring fertility. However, work is still needed to optimize

techniques and test their safety before they can become available to patients.

Introduction

Regenerative medicine is emerging as a potential tool to manage
various pathological conditions that have no current treatment.
There is particular interest in reproductive medicine, since the
number of ovarian follicles, which are the main functional units
of the ovary and responsible for female fertility, is finite at birth
and continues to fall during the reproductive lifespan, with no
ability to regenerate (Dolmans et al., 2021a). Moreover, follicles,
and especially the oocytes contained within, are characterized by
specific damage repair mechanisms, as their key role is to convey
undamaged genetic information to future offspring (Maidarti
et al, 2020). This makes follicles particularly vulnerable to
potentially damaging effects of various stimuli, resulting in
reduced fertility potential and premature depletion of the
ovarian reserve.

Regenerative medicine techniques are based on use of stem
cells, which are defined as cells originating from a multicellular
organism that are capable of giving rise to infinitely more cells
of the same type (self-renewal), as well as other cell types, by
differentiation (potency). They represent populations of
non-specialized cells that have the potential to differentiate into
specialized cellular subtypes (Weissman, 2000). Stem cells can be
classified according to their origin into embryonic, fetal, adult,
and induced pluripotent stem cells (Takahashi and Yamanaka,
2006; Bacakova et al., 2018).

The present review will focus exclusively on fetal and adult
stem cells since their use as therapeutic tools is not contentious
and is actually considered the most promising for regenerative
medicine and tissue engineering purposes. Fetal stem cells can
be isolated from various surplus fetal tissues, such as amnion,
chorion, amniotic fluid and the umbilical cord, and show greater
multilineage differentiation capacity than adult stem cells.
Adult, or somatic, stem cells are located in all organs and tissues
to varying degrees, with the function of maintaining and repair-
ing them (Ding et al., 2011). Most of them are multipotent, with
cell lineage-specific restrictions, or oligo/unipotent, also known
as progenitor cells (Melchiorri et al., 2016). Some, like MSCs, are
even able to express multipotency toward other cell lineages in
specific conditions (Bacakova et al., 2018).

MSCs are a heterogeneous population of cells with multiline-
age differentiation capacity (Bacakova et al., 2018). They grow

in vitro as plastic-adherent cells with a fibroblast-like shape, and
organize themselves into colonies (Dominici et al.,, 2006). The
International Society for Cellular Therapy established certain cri-
teria to identify unique populations of MSCs by their multilineage
differentiation capacity, facility to grow as adherent cells in stan-
dard culture conditions, and ability to express specific marker
profiles, namely CD90, CD73, CD105, and MHCI, but not CD14,
CD34, CD45, CD31, or MHCII (Dominici et al., 2006) (Fig. 1). They
can be easily isolated from a number of fetal and adult tissues,
the former including amniotic fluid-derived MSCs (AF-MSCs),
umbilical cord-derived MSCs (UC-MSCs), and placenta-derived
MSCs (PD-MSCs), and the latter including bone marrow-derived
MSCs (BM-MSCs), adipose tissue-derived MSCs (AT-MSCs), skin-
derived MSCs (S-MSCs), and even menstrual blood-derived MSCs
(Men-MSCs) (Kern et al., 2006; Polonio et al., 2020).

The impact of MSCs appears to depend on their capacity to se-
crete a diversity of cytokines, chemokines, and growth factors.
Some of these secreted factors play a crucial role in controlling
cell proliferation and apoptosis rates, thereby promoting regener-
ation of injured tissues (Wang et al.,, 2011). MSCs also exert a
modulatory effect on the immune system (Wei et al., 2013), sup-
pressing excessive responses by macrophages, dendritic cells,
and natural killer cells through cell-to-cell contact and release of
soluble immunosuppressive factors (Uccelli et al., 2008). They
also possess homing properties, namely the capacity to direction-
ally migrate to distant damaged organs/tissues in response to sig-
naling molecules (Moser and Loetscher, 2001). These abilities
have fostered growing interest in the field of regenerative medi-
cine based on the idea that MSC infusions or localized therapy
may well aid organ and tissue repair.

Increasing evidence of the potential of MSCs to treat different
diseases is currently being gathered to facilitate their transition
from bench to bedside. Different disease models are being tested
and numerous clinical trials are ongoing (Rodriguez-Fuentes
et al., 2021). While significant progress has been made, stem cell
therapy is still several steps away from use in clinical practice.
One of the main issues is standardizing the methodology to iso-
late, characterize, and expand MSCs before their clinical applica-
tion. This is not always easy, as it may involve different MSC
subpopulations that could later show heterogeneous behavior
in vitro (Baer and Geiger, 2012). Such heterogeneity is contingent
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Figure 1. Sources of mesenchymal stem cells and their capacity for differentiation. Fetal (placenta, umbilical cord, amniotic fluid) and adult (skin,
adipose tissue, bone marrow) sources of pluripotent mesenchymal stem cells are able to grow in vitro and differentiate into different tissues, including
bone, muscle, cartilage, adipose tissue, vessels, skin, and nerves. Unique populations of MSCs by their multilineage differentiation capacity, facility to
grow as adherent cells in standard culture conditions, and ability to express specific marker profiles.

on multiple factors, such as donor characteristics (age, gender,
BMI, ethnicity, pre-existing conditions, and pathologies) (Baer
and Geiger, 2012), isolation protocols (different storage tempera-
tures and isolation times), and the flow cytometry protocol ap-
plied for cell sorting (Griesche et al., 2010). Another challenge is
MSC safety in each particular experimental model. Indeed, risks
may be related to the microbiological safety and genetic stability
of MSCs after isolation and expansion. There is also potential for
adverse events after in vivo use, including concerns about onco-
genic safety and control of the host’s immune response to MSCs.

Different types of MSCs have been tested in attempts to en-
hance fertility in various contexts. Protecting the ovarian reserve
from aging and gonadotoxic damage and restoring fertility with
strategies like in vitro culture and ovarian tissue transplantation
remain paramount.

Materials and methods

The aim of this review was to provide evidence of and informa-
tion on use of MSCs to improve fertility outcomes. We explored
MSCs from different animal origins and tissue sources in specific
conditions, including: in vitro culture of granulosa cells (GCs),
ovarian tissue, and isolated ovarian follicles; ovarian tissue
transplantation; and systemic or intraovarian injection after
gonadotoxic or age-related follicle pool decline. To this end, we
took a systematic approach, reviewing all papers that investi-
gated any of these strategies in either animal models or human
studies. The primary outcome was evaluation of the ovarian re-
serve, with a focus on follicle survival, number, and growth.
Secondary outcomes involved analyses of other parameters asso-
ciated with the follicle pool, such as follicle-related markers like
hormones and growth factors, ovarian tissue viability-linked

markers like oxidative stress levels, oocyte growth and matura-
tion rates and, of course, pregnancy outcomes.

In line with preferred reporting items for systematic reviews
and meta-analyses (PRISMA) guidelines (Moher et al., 2009), we
conducted a PubMed search up to June 2023 using the following
keywords for our research: ‘mesenchymal stem cells’ AND
‘ovarian follicles’ OR ‘ovarian tissue culture’ OR ‘ovarian follicle
culture’ OR ‘cumulus oocyte complex’ (458 records). Only peer-
reviewed published articles written in English were taken into ac-
count. First, all selected studies were imported using Zotero soft-
ware and duplicates were erased (396 records). Articles were
then screened based on their titles (140) and abstracts (121)
according to the relevant criteria. Ten more papers were chosen
from the references, since they met the same benchmark. After
reading the full texts of acquired articles, those fulfilling the re-
quired criteria were included (112) (Fig. 2). Ethics approval was
not needed because this study did not involve any experimental
research. All research data were obtained from published papers.

Results

Use of MSCs in different experimental models
MSC sources, route of administration and cell labeling

The two most commonly used sources of MSCs in the field of
reproductive medicine are UC-MSCs (44 studies) and BM-MSCs
(38 studies). Other sources include AT-MSCs (22 studies),
Men-MSCs (8 studies), AF-MSCs (7 studies), P-MSCs (7 studies),
and S-MSCs (2 studies). Various animal models, including mu-
rine, ovine, equine, and human, have been applied to isolate and
expand MSCs following different experimental designs. Since
in vivo administration of MSCs has been performed both locally
(by intraovarian injections) and systemically (by iv. or ip.
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Figure 2. PRISMA flow diagram of literature search to June 2023. Literature search methodology for publications investigating use of mesenchymal
stem cells in reproductive medicine to enhance follicle outcomes. PRISMA, preferred reporting items for systematic reviews and meta-analyses.

injection), a number of authors set out to investigate MSC hom-
ing capacities to different organs. To track injected MSCs, they
implemented various approaches, including: viral transfection
with green fluorescent protein in six studies (Fu et al., 2008; Sun
et al., 2013; Deng et al., 2021; Pan et al., 2021; Zhang et al., 2021a;
Luo et al., 2022); fluorescent staining of cell membranes, with ei-
ther PKH26 dye in nine studies (Zhu et al., 2015; Ling et al., 2017,
2019, 2022a,b; Liu et al., 2019; Yang et al., 2019a; Feng et al., 2020;
El-Derany et al., 2021) or 1,1'-dioctadecyl-3,3,3',3'-tetramethyl
indocarbocyanine perchlorate (Dil) in two studies (Zarbakhsh
et al., 2019; Zhang et al., 2022a); immunohistochemical detection
of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in one study
(Besikcioglu et al., 2019); and biocompatible organic fluorescent

nanoparticles (LuminiCell Tracker™ 540) also in one study
(Salvatore et al.,, 2021). These labeling methods do not interfere
with MSC behavior in vitro, as they do not induce cell death nor
increased proliferation.

In all cases, MSCs were found in ovarian stroma surrounding
the follicles and never inside follicles, indicating that they are un-
able to differentiate into GCs or oocytes. All staining methods
proved effective and labeled MSCs remained in the ovaries for up
to 4weeks (Fu et al., 2008; Sun et al., 2013; Zarbakhsh et al., 2019;
Feng et al., 2020; El-Derany et al., 2021; Pan et al., 2021; Salvatore
et al.,, 2021), 6 weeks (Zhu et al., 2015), and 8weeks (Ling et al.,
2017, 2019), irrespective of administration mode. Cell tracking
inside the ovaries after systemic administration demonstrated
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MSC homing capacities toward distant damaged sites (Ling et al.,
2017; Besikcioglu et al., 2019; Yang et al., 2019a; El-Derany et al.,
2021; Pan et al., 2021; Salvatore et al., 2021). It also showed persis-
tence of MSCs over time, after local ovarian administration
proved that they can be retained inside tissue without being
cleared by the immune system (Ling et al., 2019; Zarbakhsh et al.,
2019). Some authors also investigated their homing capacity to-
ward other distant sites, beyond the ovaries, 24 h after injection,
identifying some MSCs in distant organs such as the uterus,
spleen, brain, lung, liver, and kidney after both intraovarian (Zhu
et al., 2015; Ling et al., 2019; Zhang et al., 2021a) and i.v. injection
(Zhu et al., 2015; El-Derany et al., 2021; Salvatore et al., 2021). One
research group explored the possibility of increasing homing
capacities toward damaged sites using MSCs pretreated by low-
intensity pulsed ultrasound (LIPUS) (Ling et al., 2017, 2022a). MSC
migration was found to increase both in vitro and in vivo in the
presence of specific molecular signals, such as stromal cell-
derived factor 1 (SDF-1), which is enhanced in damaged organs
as well as by LIPUS. SDF-1 is a member of the chemokine family,
able to drive cell homing through its link to the CXC4 receptor
and activation of signals such as phosphatidylinositol 3-kinase/
protein kinase B (PI3K/Akt) (Ling et al., 2022a,b).

Different indications of MSC derivatives: exosomes and

the secretome

Twenty-six experimental designs included use of MSC deriva-
tives, 17 of which involved MSC-derived exosomes (Sun et al.,
2017, 2019; Huang et al.,, 2018; Yang et al., 2019a, 2020a,b; Ding
et al., 2020; Zhang et al., 2020, 2021b, 2023; Deng et al., 2021; Li
etal, 2021; Geng et al., 2022; Qu et al., 2022; Park et al., 2023) or ex-
tracellular vesicles sorted according to different average sizes
(Caoetal., 2023; Eslami et al., 2023) and nine conditioned medium
containing the MSC secretome (Jia et al.,, 2017; Damous et al,
2018; Maldonado et al., 2018; Bezerra et al., 2019; Hong et al., 2020;
Lee, 2021; Park et al., 2021; Zhang et al., 2021a; Mi et al., 2022).
Such approaches are of particular interest as they circumvent
some of the issues related to stem cell therapy, including safety
and reproducibility of cell line behavior in vivo.

Extracellular vesicles include exosomes, macrovesicles and
apoptotic bodies, according to their different origin and size.
Exosomes are small (40-100nm diameter) membrane-bound
vesicles secreted by cells after invagination of the plasma mem-
brane, before being released into the extracellular space. They
can contain proteins, such as cytokines and growth factors, as
well as microRNAs (miRNAs) produced by stem cells for para-
crine communication purposes, executing comparable functions
to their cells of origin in various in vitro and in vivo experimental
models. Use of exosomes derived from MSCs has yielded useful
information on follicle behavior. Indeed, GCs were able to take in
MSC-derived exosomes (Huang et al., 2018), and this ability was
apparently maintained in vitro after exposure to chemotherapy
(CHT) (Sun et al., 2017; Zhang et al., 2020) and in vivo after sys-
temic administration, followed by homing of extracellular
vesicles toward damaged ovaries (Eslami et al., 2023). In studies
comparing the impact of exosome versus MSC administration, no
difference was encountered in follicle outcomes or restoration of
hormone levels (Yang et al., 2020a; Zhang et al., 2020; Eslami et al.,
2023). One study did, however, detect slightly higher and longer-
lasting beneficial effects on the ovarian follicle pool after stem
cell injection than exosome administration (Park et al., 2023).

Conditioned medium was mainly used in models of ovarian
tissue culture, probably to overcome the difficulties related to
different growth rates and metabolic needs of MSCs and ovarian

tissue in vitro. Discarded medium 1is richer than isolated
exosomes, as it also contains the entire free protein component
constituting the secretome. It may, however, also contain dis-
carded solutes from MSC metabolism, which could hamper the
overall effect on follicle survival and growth. The only study di-
rectly comparing the impact of MSC-derived medium and MSCs
themselves was performed on porcine cumulus-oocyte com-
plexes (COCs) and no significant difference was observed in
terms of oocyte maturation or embryo development (Lee, 2021).
This demonstrated that, at least in this particular model of
in vitro culture, the two methods are equally effective.

Role of miRNAs in ovarian function restoration

Eight papers investigated the role of specific miRNAs as effectors
of MSC signaling to GCs (Fu et al., 2017; Sun et al., 2017, 2019; Ding
et al., 2020; Yang et al., 2020a,b; Geng et al., 2022; Qu et al., 2022).
miRNAs are small non-coding RNAs, displaying regulatory func-
tions to control fundamental effector proteins in cellular func-
tion (Memczak et al., 2013). They are increasingly emerging as key
players in a number of pathological conditions, including inflam-
mation and cancer (Aljubran and Nothnick, 2021). Their regula-
tory impact on specific targets makes them attractive as
potential therapeutic tools (Rupaimoole and Slack, 2017).

In our selected studies, miRNAs were isolated from different
MSC sources, including murine BM (Fu et al., 2017; Sun et al.,
2019; Yang et al.,, 2020a), and human fetal tissues such as UC
(Ding et al., 2020; Qu et al., 2022; Sun et al., 2017; Yang et al., 2022b)
or AF (Geng et al., 2022).

One study explored the ability of damaged GCs to internalize
exosomes and the miRNAs contained within them, and observed
an increase in miR-24, miR-106a, miR-19b, and mi-R-25, all re-
lated to apoptosis signaling (Sun et al., 2019). A number of studies
investigated miRNA content in exosomes derived from human
MSCs using large molecular panels and identified miR-17-5p
(Ding et al., 2020), miR-664-5p (Sun et al., 2019), miR-369-3p (Geng
et al., 2022), and miR-126-3p (Qu et al., 2022) as potential modula-
tors of GC survival and proliferation. MiR-17-5p and miR-126-3p
are implicated in regulation of numerous cell activities, including
cell cycle progression/arrest (Cloonan et al., 2008; Fang et al,
2015) and PI3K/Akt pathway modulation through interaction
with phosphate and tensin homolog (PTEN) (Qu et al., 2022; Geng
et al., 2022). Ding et al. (2020) proved that this specific miRNA is
able to interact with sirtuin gene family, which are key regulators
of mitochondrial activity and cell response to oxidative stress.
miR-664-5p and miR-369-3p were found to target and downregu-
late p53, caspase-3 and hypoxia inducible factor 1 o (HIF-1a),
potentially having a beneficial effect on ovarian reserve
maintenance in the ovary (Sun et al., 2019; Geng et al., 2022). In all
studies, exosome administration resulted in an increase in
proliferation and a decrease in apoptosis in CHT-damaged
human GCs in vitro, and enhanced follicle survival in a
CHT-damaged murine model in vivo.

Expression of specific miRNAs was also modulated in vitro by
silencing or enhancing in different experimental models, based
on literature evidence of their role in ovarian function. Among
others, miR-144-5p was investigated, as its expression is associ-
ated with an elevated risk of premature ovarian insufficiency
(POI) (Kuang et al., 2014). Its silencing in vitro was found to revive
GCs after CHT-induced damage, through PTEN suppression and
dysregulation of the PI3K/Akt pathway, confirming its role as a
negative effector of follicle maintenance (Yang et al., 2020a). The
same in vitro impact was observed by silencing other miRNAs, in-
cluding miR-146-5p and miR-21-5p (Yang et al., 2020b). As their
presence was shown to disrupt follicle growth through PI3K/Akt
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pathway modulation, their silencing yielded better follicle re-
serve maintenance (Yang et al., 2020b).

miR-21, on the other hand, was upregulated by lentiviral
transfection (Fu et al., 2017). Its overexpression proved effective
at counteracting CHT-induced GC apoptosis. Aging mechanisms
of action appeared to be involved in modulating the PTEN and
PI3K/Akt pathway. This highlights the crucial role that the PI3K/
Akt pathway plays in follicle maintenance and growth, and also
the challenges of fully understanding how its function
is governed.

Impact of MSCs on ovarian outcomes in vitro

MSC secretome properties have also been considered as
enhancers of follicle survival and growth in in vitro models.
Culturing follicles from the primordial stage to fertilizable
oocytes is nevertheless a huge challenge (Telfer and Andersen,
2021) and the best approach today involves a multi-step protocol,
including: primordial follicle activation and initial growth; follicle
development to the antral stage; and oocyte maturation in cus-
tomized culture conditions to optimize outcomes (McLaughlin
et al., 2018). At each step, however, there is significant follicle loss
along with follicle growth, and uncertainty about oocyte compe-
tence after culture. A number of published studies have investi-
gated the ovarian follicle pool behavior in vitro and speculated
whether addition of MSCs could enhance follicle outcomes in
terms of survival and growth.

In vitro culture of GCs

In total, 24 studies scrutinized the impact of MSCs on GCs cul-
tured in vitro (Table 1). The most commonly used types (or their
exosomes) were murine BM-MSCs (Fu et al., 2008; Guo et al., 2013;
Liu et al., 2014a; Chen et al., 2018; Sun et al., 2019; Yang et al,
2020a; Lee, 2021; Eslami et al., 2023; Tian et al., 2023) and human
UC-MSCs (Sun et al.,, 2017; Ding et al., 2020; Hong et al., 2020;
Zhang et al., 2020, 2021a; Deng et al., 2021; Li et al., 2021; Qu et al.,
2022; Park et al.,, 2023) in experimental models utilizing murine
GCs. Studies using human GCs involved a broader range of MSC
sources, including amniotic fluid (Ding et al., 2017; Huang et al.,
2020; Geng et al., 2022), adipose tissue (Huang et al., 2018), bone
marrow (Park et al., 2021), umbilical cord (Park et al., 2023), and
menstrual blood (Yan et al, 2019). In all murine and in two
human studies, GCs were exposed to CHT and specifically to
alkylating agents, cisplatin or epirubicin, to mimic the gonado-
toxic damage in vitro. The remaining human studies involved GCs
taken from infertile women undergoing oocyte retrieval for IVF,
either because of physiological aging (>40years), a diminished
ovarian reserve (DOR or POI), or an aging damage model by
exposing them to H,O, (Tian et al., 2023).

All studies detected a decrease in GC apoptosis in co-culture
with MSCs. Some studies also investigated the impact of
co-culture on GC proliferation, either by directly demonstrating
increased proliferation rates, or observing activation of signaling
pathways, such as PI3K/Akt and Hippo, which are known to be in-
volved in GC survival and proliferation (Fu et al.,, 2017; Huang
et al., 2018, 2020; Hong et al., 2020; Yang et al., 2020a; Li et al., 2021;
Park et al, 2021, 2023; Qu et al, 2022). MSC co-culture also
appeared to be beneficial for cell hormone function by upregulat-
ing markers for steroidogenesis, such as cytochrome P450 19A1
(CYP19A1) and Steroidogenic acute regulatory protein (StAR)
(Huang et al.,, 2018, 2020; Park et al., 2021, 2023; Zhang et al.,
2021b), and hormone production, such as estradiol (E2), proges-
terone, anti-Mtllerian hormone (AMH) and inhibin A and B, in
the culture medium (Huang et al., 2018, 2020; Yan et al., 2019;
Zhang et al., 2021b). MSC co-culture also appeared able to reverse

some cellular aging mechanisms, including increased
reactive oxygen species (ROS) generation, accumulation of
B-galactosidase activity, and elevated methylation of adenosine
in mRNA (m6A) in specific genome sites associated with mRNA
regulation (Tian et al., 2023).

In vitro culture of ovarian tissue or isolated follicles

Eighteen studies considered use of different sources of MSCs or
their derivatives in ovarian tissue culture (Table 2). Selected ani-
mal models were rodents (11 studies), ovine (three studies), and
pigs (one study), while four studies used human ovarian tissue.
The primary outcome was to determine whether MSCs had a
positive impact as ‘feeder cells’ on follicle and/or oocyte culture
of: ovine or human ovarian cortical strips (Jia et al., 2017; Hosseini
et al., 2019; Arrivabene Neves et al., 2020; Sousa et al.,, 2021);
murine ovaries (Choi et al., 2020; Hong et al., 2020; Buigues et al.,
2021a; Cho et al., 2021; Zhang et al.,, 2021b; Mi et al., 2022; Cao
et al., 2023); isolated preantral follicles of murine, ovine, or hu-
man origin (Xia et al., 2015; Rajabi et al., 2018; Bezerra et al., 2019;
Green et al., 2019; Tomaszewski et al., 2019); and murine or por-
cine COCs (Maldonado et al.,, 2018). A positive impact was ob-
served on in vitro follicle populations in all studies using rodent
ovarian tissue, showing either increased follicle growth or more
follicles with a normal morphology. Conflicting conclusions on
the role of MSCs in follicle growth were reached for ovine and hu-
man ovarian tissue, with some authors detecting a positive effect
(Xia et al., 2015; Bezerra et al., 2019; Hosseini et al.,, 2019; Sousa
et al., 2021) and others not (Jia et al., 2017; Arrivabene Neves et al.,
2020). Equally controversial was the impact of MSCs on oocyte
outcomes after culture. Indeed, two studies found higher meiotic
resumption rates in a murine model (Maldonado et al., 2018;
Green et al, 2019), while three others, investigating oocyte
growth, meiotic resumption, and maturation rates, did not dem-
onstrate any difference compared to in vitro culture without
MSCs (Rajabi et al., 2018; Bezerra et al., 2019; Arrivabene Neves
etal., 2020).

These discrepant results may be explained by several factors
related to the high variability of the experimental design, not
only in the choice of MSC source and ovarian tissue model, but
also in the number of cells used for each experiment. Indeed, it is
important to note that studies demonstrating a less significant
impact of MSCs on ovarian tissue culture are also those using the
smallest number of MSCs, for example, 1 x 10° cells (Rajabi et al.,
2018; Arrivabene Neves et al., 2020), or MSC-conditioned medium
(Jia et al., 2017; Bezerra et al., 2019), which may be insufficient to
significantly affect oocyte growth and maturation in vitro.
Various other markers of ovarian tissue viability have also been
assessed, suggesting a positive effect when the MSC secretome is
added to in vitro culture. These include: an increase in oocyte-
related growth factors like growth differentiation factor 9 (GDF)
and bone morphogenic protein 15 (BMP15) (Xia et al., 2015; Rajabi
et al., 2018; Hosseini et al., 2019; Lee, 2021); enhanced steroidogen-
esis (Xia et al., 2015; Rajabi et al., 2018; Green et al., 2019; Hosseini
et al., 2019); greater production of growth factors, such as basic fi-
broblast growth factor (bFGF), hepatocyte growth factor (HGF),
transforming growth factor B (TFGp), insulin growth factor 1
(IGF1), vascular endothelial growth factor (VEGF), and epithelial
growth factor (EGF) (Tomaszewski et al., 2019; Cho et al., 2021;
Lee, 2021); and finally decreased ROS generation in vitro (Bezerra
etal., 2019; Lee, 2021).

Ovaries were pretreated with chemotherapeutic drugs (cyclo-
phosphamide and cisplatin) in three studies (Hong et al., 2020;
Buigues et al., 2021a; Cao et al., 2023). As in previous reports on
CHT-treated GCs, the main outcome was to assess whether MSCs
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protect against gonadotoxic damage. Buigues et al. (2021a) used
human blood containing either BM-MSCs from both patients
with POI after granulocyte colony-stimulating factor (GCS-F)
treatment or UC-MSCs from newborn girls. Both MSC sources
showed higher levels of expression of genes involved in DNA
damage recognition and repair after CHT-induced injury. Hong
et al. (2020) evidenced that use of human UC-MSCs in
CHT-injured rodent ovaries exerted a positive effect by reducing
follicle apoptosis and boosting the PI3K/Akt pathway for greater
activation and survival.

Repairing ovarian damage with MSCs

Among the numerous strategies under development to identify
an effective treatment for women affected by POI, use of MSCs
has been gaining ground over recent years. The goal of stem cell
therapy for ovarian rejuvenation is to protect the pool of remain-
ing quiescent follicles still residing in some patients in order to
improve their reproductive chances (Polonio et al., 2020). This po-
tential treatment is the result of a number of studies in mice
whose ovarian function was damaged by various chemothera-
peutic treatments or other toxins, such as ozone. Ovarian injury
models have been indeed widely used in research to mimic both
infertility and irreversible ovarian failure caused by gonadotoxic
drugs depending on dose and mode of administration (Generoso
etal., 1971). The impact of MSCs on the remaining ovarian reserve
has also been investigated using animal models of natural aging
(Polonio et al., 2020).

Natural aging and chemotherapy-induced damage:
comparing experimental models

Thirteen studies used natural aging animal models for compari-
son with young and fertile subjects (Table 3). The majority in-
volved use of rodents (Guo et al., 2013; Li et al., 2017; Ding et al.,
2018; Huang et al., 2020; Kim et al., 2020; Yang et al., 2020b; Liu
et al.,, 2021; Wang et al., 2022; Zhang et al., 2022a), while three uti-
lized bovines (Malard et al., 2020), mares (Grady et al., 2019), and
macaques (Tian et al., 2021). Various sources of MSCs were used
at different concentrations. Six of the studies employed a single
MSC injection, while the rest opted for repeated administration.
With regard to gonadotoxic damage, 65 studies were selected.
They were all aiming to characterize the effect of MSC use to re-
verse gonadotoxic injury in a murine model, except one study
that used rabbits (Table 4). In 36 studies, cyclophosphamide was
administered at different doses ranging from 50 to 200 mg/kg/day
for just 1 or up to 15days (Fu et al., 2008, 2017; Deng et al., 2021;
Abd-Allah et al.,, 2013; Lai et al., 2013, 2014; Sun et al., 2013;
Takehara et al., 2013; Kilic et al., 2014; Liu et al., 2014b; Xiao et al.,
2014; Zhu et al., 2015; Song et al., 2016; Badawy et al., 2017; Ding
et al., 2017, 2020; Ling et al., 2017, 2019, 2022a,b; Pan et al., 2017;
Bao etal., 2018; Chen et al., 2018, 2023; Herraiz et al., 2018a; Huang
et al., 2018; Mohamed et al., 2018; Besikcioglu et al., 2019; Yang
et al.,, 2019a,b, 2020a; Zarbakhsh et al., 2019; Zheng et al., 2019;
Feng et al., 2020; Luo et al., 2020; Shen et al., 2020; Buigues et al.,
2021a; Cil and Mete, 2021; Jalalie et al., 2021; Li et al., 2021; Lv
et al., 2021; Park et al., 2021, 2023; Salvatore et al., 2021; Sen
Halicioglu et al., 2022; Geng et al., 2022; Zhang et al., 2022b, 2023;
Cao et al.,, 2023; Eslami et al., 2023). In 17 studies, busulfan was
used at doses ranging from 12 to 30 mg/kg/day for single or re-
peated administration (Table 4). In four studies (Ding et al., 2017;
Herraiz et al., 2018a; Salvatore et al., 2021; Buigues et al., 2021a),
different doses were selected and compared in order to mimic a
model of mild and severe ovarian injury. Eight studies used cis-
platin at doses from 2 to 50 mg/kg/day to induce an ovarian dam-
age model (Liu et al., 2014a; Wang et al., 2017; Sun et al., 2019; Cui

et al.,, 2020; Hong et al., 2020; Zhang et al., 2021a; Luo et al., 2022;
Qu et al., 2022), while others employed whole body irradiation of
3.2 and 4 Gy, respectively (El-Derany et al.,, 2021; Liu et al., 2021),
paclitaxel (Elfayomy et al., 2016), epirubicin (Guo et al, 2019),
vinylcyclohexene diepoxide (Zhang et al., 2021b; Jiao et al., 2022),
hydrogen peroxide (Liu et al., 2019), and zona pellucida 3 peptide
(Li et al,, 2019; Zhang et al., 2021c) to repair ovarian damage.
Using MSCs encounters the same great variability in terms of
stem cell sources, concentrations and modes of administration
as do models of natural aging and rejuvenation. Moreover, in
only 47 of the 65 studies (72%) was there a known time frame be-
tween use of gonadotoxic agents and MSC treatment, ranging
from 0 to 24h in 21 studies, up to 1week in 20 studies, and much
longer (from 10 days to 6 weeks) in the remaining six studies. This
is a crucial factor for the ovarian damage model, since some
events, like DNA damage and apoptosis induction, arise just
hours after drug exposure, while tissue remodeling and fibrosis
occur over subsequent weeks. Such variability makes it difficult
to evaluate the actual healing properties and effects of MSCs on
ovarian reserve injury, and may limit the applicability of the
results in a clinical setting.

Ovarian rejuvenation and gonadotoxic damage healing:
outcomes and mechanism of action

Outcomes for both ovarian rejuvenation and gonadotoxic dam-
age healing were relatively homogeneous, both showing a posi-
tive impact of MSCs on follicle count through regulation of a
number of key processes in the ovarian microenvironment. A de-
crease in apoptosis in all ovarian compartments, including GCs,
theca cells and ovarian stroma, was evidenced in the vast major-
ity of the studies. MSCs appear to significantly downregulate var-
ious signals responsible for triggering the apoptosis cascade,
involving upregulation of antiapoptotic molecules such as B-cell
lymphoma 2 (BCL2), survivin (Huang et al., 2020), and NR4A1,
which look to be specific to theca cells (Luo et al., 2022), and a
shift in the relation between pro- and antiapoptotic signals; for
example, the BCL2/BCL2-associated X (BAX) ratio (Zarbakhsh
et al., 2019; Geng et al., 2022; Ling et al., 2022b; Luo et al., 2022; Qu
et al., 2022; Zhang et al., 2023). This is probably a result of the
paracrine signaling of MSCs, which are rich in growth factors like
VEGF, HGF, and IGF-1, and able to promote cell survival and pro-
liferation in vitro and in vivo (Uzumcu et al.,, 2006; Polonio et al.,
2020; Chen et al., 2023).

MSC paracrine signaling has been shown to target different
growth factors, including VEGF, HGF, TGFB, IGF-1, and nerve
growth factor (NGF), whose presence was first confirmed in MSC
in vitro, and then detected in the ovaries after in vivo administra-
tion of MSCs (Abd-Allah et al., 2013; Sun et al.,, 2013; Takehara
et al., 2013; Elfayomy et al.,, 2016; Ling et al., 2017, 2019, 2022b;
Zheng et al., 2019; Yang et al., 2019a; Deng et al., 2021, Jiao et al.,
2022). Elevated proangiogenic growth factor levels may enhance
tissue revascularization, whose increase is sustained by develop-
ment of theca cells around secondary follicles and is essential for
their further growth (Takehara et al.,, 2013; Yang et al., 2019a,b;
Tian et al., 2021; Buigues et al., 2021a; Chen et al., 2023). On the
other hand, proinflammatory cytokines I16 and IIp1 were found
at decreased levels after MSCs use (Lai et al., 2014; Ling et al,,
2017; Deng et al., 2021). Such regulation of the cytokine environ-
ment, favoring neovascularization (Qu et al., 2022), and control of
inflammation, may be why collagen deposition leading to fibrosis
is also reduced (Abd-Allah et al., 2013; Jalalie et al., 2021; Tian
etal., 2021; Zhang et al., 2021b; Chen et al., 2023; Park et al., 2023).
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This favorable paracrine signaling results in not only GC sur-
vival, but also broader beneficial effects on the ovarian reserve.
Indeed, hormone function appeared to be restored, showing im-
proved hormone values in many studies (decrease in FSH and in-
crease in AMH and E2). Along with endocrine function
restoration, effective protection of the follicle pool was also evi-
denced by greater numbers of oocytes and embryos (Lai et al.,
2013; Sun et al., 2013; Herraiz et al., 2018a; Grady et al.,, 2019; Liu
et al., 2019; Malard et al., 2020; Jalalie et al., 2021; Liu et al., 2021;
Salvatore et al., 2021; Wang et al., 2022), higher pregnancy rates,
and larger litters (Takehara et al., 2013; Lai et al., 2014; Xiao et al.,
2014; Zhu et al.,, 2015; Ding et al., 2017; Liu et al., 2019; Herraiz
et al., 2018a; Mohamed et al., 2019; Cui et al.,, 2020; Yang et al.,
2020b; Buigues et al., 2021a; Lv et al.,, 2021; Zhang et al., 2021a,b;
Ling et al., 2022a; Eslami et al., 2023; Park et al., 2023).

In terms of follicle quality, enhanced follicle growth and im-
proved follicle morphology were often observed. A number of po-
tential mechanisms could be involved in this observation, since
follicle growth and function are regulated by a complex interac-
tion of pathways. This includes the ability of follicles to remain
quiescent in the ovarian cortex, with oocytes in meiotic arrest,
and at the same time ready for recruitment and further growth
(Grosbois et al., 2020). One of the main biological functions im-
pacted by the MSC secretome does appear to be primordial folli-
cle activation. Interaction with the PI3K/Akt pathway was indeed
demonstrated in several studies, resulting in better follicle
growth (Ding et al., 2018; Liu et al.,, 2019, 2021; Hong et al., 2020;
Huang et al., 2020; Yang et al., 2020a,b; Gil and Mete, 2021; Deng
et al., 2021; El-Derany et al., 2021; Cao et al., 2023). Other cell pro-
liferation signals, like SMADs and c-Jun N-terminal kinase (J]NK2)
(Bao et al., 2018; Huang et al., 2018; Feng et al., 2020), were also
found, as were cell-cell interaction signals such as connexin 43
expression (Sen Halicioglu et al., 2022). Rapid oocyte growth and
meiotic resumption require an efficient engine to ensure com-
plete maturation and good quality embryos. This is facilitated by
the presence of a large mitochondrial mass and abundance of
substrates, including glucose and fatty acids for oxidative phos-
phorylation (Al-Zubaidi et al., 2021). The impact of MSCs on mito-
chondrial function in oocytes was also explored in one study,
which found a more substantial relevant increase in mitochon-
drial DNA in the presence of MSCs, a key step allowing further
meiotic resumption (Wang et al., 2022).

The effect on mitochondria is part of a more extensive influ-
ence that MSCs have on cell function, which has been shown by
several authors to exert anti-aging properties (Cacciottola et al.,
2021a). Mitochondrial function and control of oxidative stress in
cells are among critical factors in cell senescence, and their regu-
lation may explain the rejuvenating effect of stem cell therapy.
Moreover, MSCs were found to reverse other specific signaling
pathways associated with aging, including upregulation of DNA
damage repair mechanisms, namely phosphorylated histone
H2AX (yH2AX), breast cancer 1 (BRCA1), poly [ADP-ribose| poly-
merase 1 (PARP1), and X-ray repair cross complementing 6
(XRCC6) (Huang et al., 2020), as well as cell cycle progression (El-
Derany et al., 2021; Tian et al., 2021). One study explored the pos-
sibility of enhancing ovarian tissue quality by injecting MSC-
derived mitochondria into the periovarian space, exhibiting upre-
gulation of gene pathways related to mitochondrial function and
energy supply (Zhang et al., 2022a). The experiment did not, how-
ever, demonstrate any significant effect on the ovarian reserve,
confirming that natural aging is more challenging to reverse than
iatrogenic treatments.

Poor follicle quality may also be explained by other less ex-
plored mechanisms. Endoplasmic reticulum (ER) stress was in-
vestigated in one study as a potential trigger of follicle death,
using markers like inositol-requiring enzyme lo and glucose-
regulated protein 78 (Li et al, 2019). MSCs appeared to reverse this
cell dysfunction, resulting in restored GC survival. ER stress is
caused by the accumulation of unfolded or misfolded proteins
caused by various pathological conditions, including oxidative
stress and inflammation. It leads to organelle swelling in the
form of cytoplasmic vacuoles, which may trigger follicle death by
atresia (Hay et al., 1976). While massive ER dysfunction owing to
complete loss of calcium homeostasis and membrane lipid dam-
age is very hard to reverse, moderate ER stress levels may allow
oocyte maturation (Lin et al.,, 2012; Takahashi et al., 2019). It is
therefore important to act upon this cell mechanism to ensure
the development of normal and fertilizable oocytes, having com-
pleted maturation, especially after in vitro growth (Harada et al.,
2015; McLaughlin et al., 2018).

MSCs for ovarian tissue transplantation

Twelve studies on ovarian tissue transplantation were identified
and included in the review (Table 5). The majority of studies on
human ovarian tissue were published by two research groups in
China (Xia et al., 2015; Cheng et al., 2022) and two research groups
in Europe, namely the UCL Gynecology Research Unit in Brussels,
Belgium (Manavella et al., 2018, 2019; Cacciottola et al., 2020,
2021b,c) and the Reproductive Medicine Research Group in
Valencia, Spain (Herraiz et al., 2018a; Buigues et al., 2021a,b). Two
studies involved autologous ovarian transplantation in murine
models (Damous et al., 2018; Yang et al., 2020b), where MSCs were
either injected into the ovaries or systemically, taking advantage
of their homing capacities, or grafted locally with the help of bio-
compatible scaffolds (fibrin or Matrigel).

In terms of follicle outcomes, co-transplantation with MSCs
provided follicle pool protection, especially of primordial follicles
(Xia et al., 2015; Cacciottola et al., 2020, 2021b; Cheng et al., 2022),
by both a decrease in follicle apoptosis (Xia et al., 2015; Damous
et al., 2018; Buigues et al., 2021b; Cacciottola et al., 2021b; Cheng
et al., 2022) and PI3K/Akt pathway activation (Cacciottola et al.,
2021b). These findings may be explained by what is already
known about the impact of MSCs on ovarian tissue revasculariza-
tion. Indeed, earlier reoxygenation (Manavella et al., 2018) and re-
perfusion (Xia et al, 2015; Cacciottola et al., 2021c) have been
evidenced, along with greater revascularization of ovarian grafts
(Xia et al., 2015; Manavella et al., 2018; Herraiz et al,, 2018a;
Manavella et al., 2019; Buigues et al., 2021b; Cheng et al., 2022).
The main reason for this positive effect is the MSC secretome,
which contains a number of proangiogenic factors like VEGF and
bFGF (Manavella et al., 2019; Buigues et al., 2021a; Cacciottola
etal., 2021c).

Ovarian tissue transplantation outcomes are currently limited
by massive follicle death occurring shortly after grafting because
of both hypoxia-mediated apoptosis and non-physiological folli-
cle activation (Dolmans et al, 2021a). Transplantation
approaches using MSCs to boost early graft revascularization
may well address this issue in a clinical setting and enhance
transplantation results. All patients would potentially benefit,
but especially those with lower chances of fertility restoration us-
ing this technique. This includes subjects showing signs of an al-
ready depleted follicle reserve in their cryopreserved ovarian
cortex, or with a damaged pelvis caused by repeated surgery or
previous pelvic irradiation, making it unable to properly host
ovarian grafts (Dolmans et al., 2021b).
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Ongoing clinical applications

Use of MSCs to increase the likelihood of pregnancy in postmeno-
pausal patients has already been recorded in a clinical context,
with publication of case reports and small case series. The first
live births were obtained by intraovarian BM-MSC injection by
Edessy et al. (2016) in 1 out of 10 treated patients with POI
(26-33years), by Gabr et al. (2016) in 1 out of 30 treated patients
with POI (18-40years), and by Gupta et al. (2018) in one patient
aged 45years. Preliminary results on DOR subjects were pub-
lished by Herraiz et al. (2018b) and the study is still ongoing.
Seventeen patients with DOR (<39years) undergoing intra-
arterial catheterization for MSC mobilization using GCS-F were
included. An improvement in ovarian function was observed in
around 80% of patients within 4weeks. There were increased
numbers of antral follicles, particularly in the infused ovary, and
also retrieved oocytes, with a significant drop in cancelation rates
after controlled ovarian stimulation (Herraiz et al., 2018b). Five
pregnancies were obtained, three of which resulted in a healthy
baby at the time of publication. The same group (Herraiz et al.)
recruited 20 patients with POI (<39 years of age) for a new study
investigating both intra-arterial catheterization and stem cell
mobilization in peripheral blood using granulocyte-colony stimu-
lating factor. The second technique relying on peripheral blood,
which is much less invasive than the original approach, appears
to have a systemic effect on both ovaries after stem cell injection,
thanks to their homing ability to distant damaged sites, as previ-
ously suggested by several animal studies (Polonio et al., 2020).
Only preliminary data have been published so far, reporting
menses recovery in around 40% of patients and one pregnancy to
date (Polonio et al., 2020).

Clinical application of sources other than BM-MSCs for fertil-
ity restoration in patients with POI have also been published re-
cently. One study reported menses recovery in four out of nine
patients (29-39years) treated by intraovarian injection of AT-
MSCs (Mashayekhi et al.,, 2021). Another study reported menses
recovery and increased antral follicle count in 4 out of 15 POI
patients treated with autologous Men-MSCs (Zafardoust et al.,
2023). In terms of fertility restoration, four live births were
obtained after treating 61 patients with POI (<35 years old) with
UC-MSCs (Yan et al., 2020).

All published studies have reported live birth rates of around
10% in patients with POIL These may be considered comparable
to spontaneous pregnancy rates of around 5-10% in women with
POl in the first few years after their diagnosis, owing to spontane-
ous but temporary ovarian reactivation (Fraison et al., 2019).
While these results are promising and corroborated by sound evi-
dence from animal studies, ovarian rejuvenation with MSCs has
not yet delivered the expected results. Future studies need to fo-
cus on ways of enhancing fertility in these patients (Rosario and
Anderson, 2021). One way may be maximizing the effect of stem
cell use by choosing the best conditions, in terms of cell type,
concentration, and administration mode, in order to boost their
biological impact on the dormant ovarian reserve. Another way
may be advancing our understanding of the pathophysiology of
POl in order to be able to select the subgroup of patients with the
best chance of benefiting from this technique.

Discussion/conclusions

The present article offers a comprehensive overview of possible
future applications of MSCs in reproductive medicine. MSCs from
different sources, including fetal and adult tissues, have been
tested in different conditions, as have their derivatives (exosomes

and the secretome contained in culture medium). The majority
of studies consider follicle recovery after CHT exposure, with nu-
merous in vitro studies on GCs and in vivo studies in murine mod-
els. All of them investigate the potentially beneficial impacts of
MSCs on the follicle pool during or immediately after gonado-
toxic damage, providing more in-depth knowledge of the ability
of GCs to recover, as well as the dynamics governing follicle
death and abnormal activation after injury. This model does not,
however, represent the clinical situation of young women diag-
nosed with DOR or POI caused by gonadotoxic therapy years
prior. This could be the reason for the discrepancy between out-
comes of preclinical studies, which clearly show significant pro-
tection of the follicle pool mediated by MSCs, and results from
the first clinical trials, in which the MSC effect appears to be
much more modest. Further studies are needed to better under-
stand the impact of MSCs on the follicle pool, particularly on oo-
cyte quality, which may be the limiting factor responsible for the
disappointing results.

Other promising clinical applications involving MSCs are
emerging from the literature, in our quest to enhance fertility
outcomes. Ovarian tissue co-culture with MSCs, used as feeder
cells to improve follicle survival, growth, and oocyte competence,
may serve to propel the ovarian tissue in vitro culture technique
toward legitimate clinical application. Similarly, MSCs have also
proved effective at boosting revascularization of the grafting site
in the context of ovarian tissue transplantation. Indeed, data
from preclinical studies using human ovarian tissue xenografting
models appear robust and reproducible, suggesting a possible
role for MSCs in counteracting large-scale ovarian follicle pool
loss after grafting, which is still one of the main limiting factors
of the technique.

To sum up, all gathered data on the one hand show that re-
generative medicine techniques are quickly gaining ground
among the innovative techniques being developed for future clin-
ical application in the field of reproductive medicine. On the
other hand, there is still a lot of work to do before MSCs can be
safely and effectively used to improve follicle outcomes in differ-
ent clinical applications. We are moving in the right direction but
need to delve deeper to advance our fundamental understanding
of these multipotent cells.
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