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ABSTRACT 

STUDY QUESTION: To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future 
clinical application?

SUMMARY ANSWER: Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting 
the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings.

WHAT IS KNOWN ALREADY: Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a num
ber of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been 
tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites 
(homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities.

STUDY DESIGN, SIZE, DURATION: Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, 
we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 
‘mesenchymal stem cells’ AND ‘ovarian follicles’ OR ‘ovarian tissue culture’ OR ‘ovarian follicle culture’ OR ‘cumulus oocyte com
plex’. Only peer-reviewed published articles written in English were included.

PARTICIPANTS/MATERIALS, SETTING, METHODS: The primary outcome for the experimental strategies was evaluation of the ovar
ian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associ
ated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, 
oocyte growth and maturation rates, and of course pregnancy outcomes.

MAIN RESULTS AND THE ROLE OF CHANCE: Preclinical studies exploring MSCs from different animal origins and tissue sources in 
specific conditions were selected (n¼ 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; 
ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. 
Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models 
and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder 
cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future 
clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian 
tissue in experimental animal models.

LIMITATIONS, REASONS FOR CAUTION: While preclinical results look promising in terms of protecting the ovarian reserve in differ
ent experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), 
there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting.

WIDER IMPLICATIONS OF THE FINDINGS: All gathered data on the one hand show that regenerative medicine techniques are 
quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive med
icine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively 
used in different clinical applications.
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Introduction
Regenerative medicine is emerging as a potential tool to manage 
various pathological conditions that have no current treatment. 
There is particular interest in reproductive medicine, since the 
number of ovarian follicles, which are the main functional units 
of the ovary and responsible for female fertility, is finite at birth 
and continues to fall during the reproductive lifespan, with no 
ability to regenerate (Dolmans et al., 2021a). Moreover, follicles, 
and especially the oocytes contained within, are characterized by 
specific damage repair mechanisms, as their key role is to convey 
undamaged genetic information to future offspring (Maidarti 
et al., 2020). This makes follicles particularly vulnerable to 
potentially damaging effects of various stimuli, resulting in 
reduced fertility potential and premature depletion of the 
ovarian reserve.

Regenerative medicine techniques are based on use of stem 
cells, which are defined as cells originating from a multicellular 
organism that are capable of giving rise to infinitely more cells 
of the same type (self-renewal), as well as other cell types, by 
differentiation (potency). They represent populations of 
non-specialized cells that have the potential to differentiate into 
specialized cellular subtypes (Weissman, 2000). Stem cells can be 
classified according to their origin into embryonic, fetal, adult, 
and induced pluripotent stem cells (Takahashi and Yamanaka, 
2006; Bacakova et al., 2018).

The present review will focus exclusively on fetal and adult 
stem cells since their use as therapeutic tools is not contentious 
and is actually considered the most promising for regenerative 
medicine and tissue engineering purposes. Fetal stem cells can 
be isolated from various surplus fetal tissues, such as amnion, 
chorion, amniotic fluid and the umbilical cord, and show greater 
multilineage differentiation capacity than adult stem cells. 
Adult, or somatic, stem cells are located in all organs and tissues 
to varying degrees, with the function of maintaining and repair
ing them (Ding et al., 2011). Most of them are multipotent, with 
cell lineage-specific restrictions, or oligo/unipotent, also known 
as progenitor cells (Melchiorri et al., 2016). Some, like MSCs, are 
even able to express multipotency toward other cell lineages in 
specific conditions (Bacakova et al., 2018).

MSCs are a heterogeneous population of cells with multiline
age differentiation capacity (Bacakova et al., 2018). They grow 

in vitro as plastic-adherent cells with a fibroblast-like shape, and 
organize themselves into colonies (Dominici et al., 2006). The 
International Society for Cellular Therapy established certain cri
teria to identify unique populations of MSCs by their multilineage 
differentiation capacity, facility to grow as adherent cells in stan
dard culture conditions, and ability to express specific marker 
profiles, namely CD90, CD73, CD105, and MHCI, but not CD14, 
CD34, CD45, CD31, or MHCII (Dominici et al., 2006) (Fig. 1). They 
can be easily isolated from a number of fetal and adult tissues, 
the former including amniotic fluid-derived MSCs (AF-MSCs), 
umbilical cord-derived MSCs (UC-MSCs), and placenta-derived 
MSCs (PD-MSCs), and the latter including bone marrow-derived 
MSCs (BM-MSCs), adipose tissue-derived MSCs (AT-MSCs), skin- 
derived MSCs (S-MSCs), and even menstrual blood-derived MSCs 
(Men-MSCs) (Kern et al., 2006; Polonio et al., 2020).

The impact of MSCs appears to depend on their capacity to se
crete a diversity of cytokines, chemokines, and growth factors. 
Some of these secreted factors play a crucial role in controlling 
cell proliferation and apoptosis rates, thereby promoting regener
ation of injured tissues (Wang et al., 2011). MSCs also exert a 
modulatory effect on the immune system (Wei et al., 2013), sup
pressing excessive responses by macrophages, dendritic cells, 
and natural killer cells through cell-to-cell contact and release of 
soluble immunosuppressive factors (Uccelli et al., 2008). They 
also possess homing properties, namely the capacity to direction
ally migrate to distant damaged organs/tissues in response to sig
naling molecules (Moser and Loetscher, 2001). These abilities 
have fostered growing interest in the field of regenerative medi
cine based on the idea that MSC infusions or localized therapy 
may well aid organ and tissue repair.

Increasing evidence of the potential of MSCs to treat different 
diseases is currently being gathered to facilitate their transition 
from bench to bedside. Different disease models are being tested 
and numerous clinical trials are ongoing (Rodr�ıguez-Fuentes 
et al., 2021). While significant progress has been made, stem cell 
therapy is still several steps away from use in clinical practice. 
One of the main issues is standardizing the methodology to iso
late, characterize, and expand MSCs before their clinical applica
tion. This is not always easy, as it may involve different MSC 
subpopulations that could later show heterogeneous behavior 
in vitro (Baer and Geiger, 2012). Such heterogeneity is contingent 

WHAT DOES THIS MEAN FOR PATIENTS? 
‘Regenerative medicine’ describes a potential clinical approach for managing various pathological conditions (i.e. diseases or in
jury) that have no current treatment options, including many in the field of human reproduction. The techniques involved are 
based on the use of mesenchymal stem cells (MSCs), which are non-specialized cells that can give rise to infinitely more cells of 
the same type, as well as other cell types. Stem cells have the potential to regenerate and produce signals that promote wound 
healing (i.e. tissue regeneration) in different organs. For this reason, various experimental strategies are under development to ex
ploit the ability of stem cells to protect or restore fertility. More specifically, stem cells may help protect the ovary (and the fol
licles/eggs it contains) against different types of injury, caused either by the aging process or use of chemotherapy after a cancer 
diagnosis. Both conditions significantly decrease a woman’s fertility and chance of pregnancy. Would MSC infusion or localized 
therapy help repair damaged ovaries? We undertook a careful review of all studies that investigated any strategy using MSCs in ei
ther animal models or human studies, to provide evidence that MSCs could improve fertility outcomes. Studies that evaluated 
‘ovarian reserve’—that is the reproductive potential left within a woman’s two ovaries based on number and quality of eggs—were 
our primary interest. The results showed that different types of MSCs have been tested in attempts to enhance fertility in various 
contexts. Among these, they improve follicle survival and growth, and are also able to reverse chemotherapy-induced ovarian 
damage and improve follicle pool survival by boosting ovarian re-growth of blood vessels. Based on recently gathered data, studies 
in regenerative medicine are yielding encouraging results in terms of restoring fertility. However, work is still needed to optimize 
techniques and test their safety before they can become available to patients.
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on multiple factors, such as donor characteristics (age, gender, 
BMI, ethnicity, pre-existing conditions, and pathologies) (Baer 
and Geiger, 2012), isolation protocols (different storage tempera
tures and isolation times), and the flow cytometry protocol ap
plied for cell sorting (Griesche et al., 2010). Another challenge is 
MSC safety in each particular experimental model. Indeed, risks 
may be related to the microbiological safety and genetic stability 
of MSCs after isolation and expansion. There is also potential for 
adverse events after in vivo use, including concerns about onco
genic safety and control of the host’s immune response to MSCs.

Different types of MSCs have been tested in attempts to en
hance fertility in various contexts. Protecting the ovarian reserve 
from aging and gonadotoxic damage and restoring fertility with 
strategies like in vitro culture and ovarian tissue transplantation 
remain paramount.

Materials and methods
The aim of this review was to provide evidence of and informa
tion on use of MSCs to improve fertility outcomes. We explored 
MSCs from different animal origins and tissue sources in specific 
conditions, including: in vitro culture of granulosa cells (GCs), 
ovarian tissue, and isolated ovarian follicles; ovarian tissue 
transplantation; and systemic or intraovarian injection after 
gonadotoxic or age-related follicle pool decline. To this end, we 
took a systematic approach, reviewing all papers that investi
gated any of these strategies in either animal models or human 
studies. The primary outcome was evaluation of the ovarian re
serve, with a focus on follicle survival, number, and growth. 
Secondary outcomes involved analyses of other parameters asso
ciated with the follicle pool, such as follicle-related markers like 
hormones and growth factors, ovarian tissue viability-linked 

markers like oxidative stress levels, oocyte growth and matura
tion rates and, of course, pregnancy outcomes.

In line with preferred reporting items for systematic reviews 
and meta-analyses (PRISMA) guidelines (Moher et al., 2009), we 
conducted a PubMed search up to June 2023 using the following 
keywords for our research: ‘mesenchymal stem cells’ AND 
‘ovarian follicles’ OR ‘ovarian tissue culture’ OR ‘ovarian follicle 
culture’ OR ‘cumulus oocyte complex’ (458 records). Only peer- 
reviewed published articles written in English were taken into ac
count. First, all selected studies were imported using Zotero soft
ware and duplicates were erased (396 records). Articles were 
then screened based on their titles (140) and abstracts (121) 
according to the relevant criteria. Ten more papers were chosen 
from the references, since they met the same benchmark. After 
reading the full texts of acquired articles, those fulfilling the re
quired criteria were included (112) (Fig. 2). Ethics approval was 
not needed because this study did not involve any experimental 
research. All research data were obtained from published papers.

Results
Use of MSCs in different experimental models
MSC sources, route of administration and cell labeling
The two most commonly used sources of MSCs in the field of 
reproductive medicine are UC-MSCs (44 studies) and BM-MSCs 
(38 studies). Other sources include AT-MSCs (22 studies), 
Men-MSCs (8 studies), AF-MSCs (7 studies), P-MSCs (7 studies), 
and S-MSCs (2 studies). Various animal models, including mu
rine, ovine, equine, and human, have been applied to isolate and 
expand MSCs following different experimental designs. Since 
in vivo administration of MSCs has been performed both locally 
(by intraovarian injections) and systemically (by i.v. or i.p. 

Figure 1. Sources of mesenchymal stem cells and their capacity for differentiation. Fetal (placenta, umbilical cord, amniotic fluid) and adult (skin, 
adipose tissue, bone marrow) sources of pluripotent mesenchymal stem cells are able to grow in vitro and differentiate into different tissues, including 
bone, muscle, cartilage, adipose tissue, vessels, skin, and nerves. Unique populations of MSCs by their multilineage differentiation capacity, facility to 
grow as adherent cells in standard culture conditions, and ability to express specific marker profiles.
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injection), a number of authors set out to investigate MSC hom
ing capacities to different organs. To track injected MSCs, they 
implemented various approaches, including: viral transfection 
with green fluorescent protein in six studies (Fu et al., 2008; Sun 
et al., 2013; Deng et al., 2021; Pan et al., 2021; Zhang et al., 2021a; 
Luo et al., 2022); fluorescent staining of cell membranes, with ei
ther PKH26 dye in nine studies (Zhu et al., 2015; Ling et al., 2017, 
2019, 2022a,b; Liu et al., 2019; Yang et al., 2019a; Feng et al., 2020; 
El-Derany et al., 2021) or 1,10-dioctadecyl-3,3,30,30-tetramethyl 
indocarbocyanine perchlorate (Dil) in two studies (Zarbakhsh 
et al., 2019; Zhang et al., 2022a); immunohistochemical detection 
of 5-bromo-2'-deoxyuridine (BrdU)-labeled cells in one study 
(Besikcioglu et al., 2019); and biocompatible organic fluorescent 

nanoparticles (LuminiCell TrackerTM 540) also in one study 
(Salvatore et al., 2021). These labeling methods do not interfere 
with MSC behavior in vitro, as they do not induce cell death nor 
increased proliferation.

In all cases, MSCs were found in ovarian stroma surrounding 
the follicles and never inside follicles, indicating that they are un
able to differentiate into GCs or oocytes. All staining methods 
proved effective and labeled MSCs remained in the ovaries for up 
to 4 weeks (Fu et al., 2008; Sun et al., 2013; Zarbakhsh et al., 2019; 
Feng et al., 2020; El-Derany et al., 2021; Pan et al., 2021; Salvatore 
et al., 2021), 6 weeks (Zhu et al., 2015), and 8 weeks (Ling et al., 
2017, 2019), irrespective of administration mode. Cell tracking 
inside the ovaries after systemic administration demonstrated 

Figure 2. PRISMA flow diagram of literature search to June 2023. Literature search methodology for publications investigating use of mesenchymal 
stem cells in reproductive medicine to enhance follicle outcomes. PRISMA, preferred reporting items for systematic reviews and meta-analyses.
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MSC homing capacities toward distant damaged sites (Ling et al., 
2017; Besikcioglu et al., 2019; Yang et al., 2019a; El-Derany et al., 
2021; Pan et al., 2021; Salvatore et al., 2021). It also showed persis
tence of MSCs over time, after local ovarian administration 
proved that they can be retained inside tissue without being 
cleared by the immune system (Ling et al., 2019; Zarbakhsh et al., 
2019). Some authors also investigated their homing capacity to
ward other distant sites, beyond the ovaries, 24 h after injection, 
identifying some MSCs in distant organs such as the uterus, 
spleen, brain, lung, liver, and kidney after both intraovarian (Zhu 
et al., 2015; Ling et al., 2019; Zhang et al., 2021a) and i.v. injection 
(Zhu et al., 2015; El-Derany et al., 2021; Salvatore et al., 2021). One 
research group explored the possibility of increasing homing 
capacities toward damaged sites using MSCs pretreated by low- 
intensity pulsed ultrasound (LIPUS) (Ling et al., 2017, 2022a). MSC 
migration was found to increase both in vitro and in vivo in the 
presence of specific molecular signals, such as stromal cell- 
derived factor 1 (SDF-1), which is enhanced in damaged organs 
as well as by LIPUS. SDF-1 is a member of the chemokine family, 
able to drive cell homing through its link to the CXC4 receptor 
and activation of signals such as phosphatidylinositol 3-kinase/ 
protein kinase B (PI3K/Akt) (Ling et al., 2022a,b).

Different indications of MSC derivatives: exosomes and 
the secretome
Twenty-six experimental designs included use of MSC deriva
tives, 17 of which involved MSC-derived exosomes (Sun et al., 
2017, 2019; Huang et al., 2018; Yang et al., 2019a, 2020a,b; Ding 
et al., 2020; Zhang et al., 2020, 2021b, 2023; Deng et al., 2021; Li 
et al., 2021; Geng et al., 2022; Qu et al., 2022; Park et al., 2023) or ex
tracellular vesicles sorted according to different average sizes 
(Cao et al., 2023; Eslami et al., 2023) and nine conditioned medium 
containing the MSC secretome (Jia et al., 2017; Damous et al., 
2018; Maldonado et al., 2018; Bezerra et al., 2019; Hong et al., 2020; 
Lee, 2021; Park et al., 2021; Zhang et al., 2021a; Mi et al., 2022). 
Such approaches are of particular interest as they circumvent 
some of the issues related to stem cell therapy, including safety 
and reproducibility of cell line behavior in vivo.

Extracellular vesicles include exosomes, macrovesicles and 
apoptotic bodies, according to their different origin and size. 
Exosomes are small (40–100 nm diameter) membrane-bound 
vesicles secreted by cells after invagination of the plasma mem
brane, before being released into the extracellular space. They 
can contain proteins, such as cytokines and growth factors, as 
well as microRNAs (miRNAs) produced by stem cells for para
crine communication purposes, executing comparable functions 
to their cells of origin in various in vitro and in vivo experimental 
models. Use of exosomes derived from MSCs has yielded useful 
information on follicle behavior. Indeed, GCs were able to take in 
MSC-derived exosomes (Huang et al., 2018), and this ability was 
apparently maintained in vitro after exposure to chemotherapy 
(CHT) (Sun et al., 2017; Zhang et al., 2020) and in vivo after sys
temic administration, followed by homing of extracellular 
vesicles toward damaged ovaries (Eslami et al., 2023). In studies 
comparing the impact of exosome versus MSC administration, no 
difference was encountered in follicle outcomes or restoration of 
hormone levels (Yang et al., 2020a; Zhang et al., 2020; Eslami et al., 
2023). One study did, however, detect slightly higher and longer- 
lasting beneficial effects on the ovarian follicle pool after stem 
cell injection than exosome administration (Park et al., 2023).

Conditioned medium was mainly used in models of ovarian 
tissue culture, probably to overcome the difficulties related to 
different growth rates and metabolic needs of MSCs and ovarian 

tissue in vitro. Discarded medium is richer than isolated 
exosomes, as it also contains the entire free protein component 
constituting the secretome. It may, however, also contain dis
carded solutes from MSC metabolism, which could hamper the 
overall effect on follicle survival and growth. The only study di
rectly comparing the impact of MSC-derived medium and MSCs 
themselves was performed on porcine cumulus–oocyte com
plexes (COCs) and no significant difference was observed in 
terms of oocyte maturation or embryo development (Lee, 2021). 
This demonstrated that, at least in this particular model of 
in vitro culture, the two methods are equally effective.

Role of miRNAs in ovarian function restoration
Eight papers investigated the role of specific miRNAs as effectors 
of MSC signaling to GCs (Fu et al., 2017; Sun et al., 2017, 2019; Ding 
et al., 2020; Yang et al., 2020a,b; Geng et al., 2022; Qu et al., 2022). 
miRNAs are small non-coding RNAs, displaying regulatory func
tions to control fundamental effector proteins in cellular func
tion (Memczak et al., 2013). They are increasingly emerging as key 
players in a number of pathological conditions, including inflam
mation and cancer (Aljubran and Nothnick, 2021). Their regula
tory impact on specific targets makes them attractive as 
potential therapeutic tools (Rupaimoole and Slack, 2017).

In our selected studies, miRNAs were isolated from different 
MSC sources, including murine BM (Fu et al., 2017; Sun et al., 
2019; Yang et al., 2020a), and human fetal tissues such as UC 
(Ding et al., 2020; Qu et al., 2022; Sun et al., 2017; Yang et al., 2022b) 
or AF (Geng et al., 2022).

One study explored the ability of damaged GCs to internalize 
exosomes and the miRNAs contained within them, and observed 
an increase in miR-24, miR-106a, miR-19b, and mi-R-25, all re
lated to apoptosis signaling (Sun et al., 2019). A number of studies 
investigated miRNA content in exosomes derived from human 
MSCs using large molecular panels and identified miR-17-5p 
(Ding et al., 2020), miR-664-5p (Sun et al., 2019), miR-369-3p (Geng 
et al., 2022), and miR-126-3p (Qu et al., 2022) as potential modula
tors of GC survival and proliferation. MiR-17-5p and miR-126-3p 
are implicated in regulation of numerous cell activities, including 
cell cycle progression/arrest (Cloonan et al., 2008; Fang et al., 
2015) and PI3K/Akt pathway modulation through interaction 
with phosphate and tensin homolog (PTEN) (Qu et al., 2022; Geng 
et al., 2022). Ding et al. (2020) proved that this specific miRNA is 
able to interact with sirtuin gene family, which are key regulators 
of mitochondrial activity and cell response to oxidative stress. 
miR-664-5p and miR-369-3p were found to target and downregu
late p53, caspase-3 and hypoxia inducible factor 1 a (HIF-1a), 
potentially having a beneficial effect on ovarian reserve 
maintenance in the ovary (Sun et al., 2019; Geng et al., 2022). In all 
studies, exosome administration resulted in an increase in 
proliferation and a decrease in apoptosis in CHT-damaged 
human GCs in vitro, and enhanced follicle survival in a 
CHT-damaged murine model in vivo.

Expression of specific miRNAs was also modulated in vitro by 
silencing or enhancing in different experimental models, based 
on literature evidence of their role in ovarian function. Among 
others, miR-144-5p was investigated, as its expression is associ
ated with an elevated risk of premature ovarian insufficiency 
(POI) (Kuang et al., 2014). Its silencing in vitro was found to revive 
GCs after CHT-induced damage, through PTEN suppression and 
dysregulation of the PI3K/Akt pathway, confirming its role as a 
negative effector of follicle maintenance (Yang et al., 2020a). The 
same in vitro impact was observed by silencing other miRNAs, in
cluding miR-146-5p and miR-21-5p (Yang et al., 2020b). As their 
presence was shown to disrupt follicle growth through PI3K/Akt 
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pathway modulation, their silencing yielded better follicle re
serve maintenance (Yang et al., 2020b).

miR-21, on the other hand, was upregulated by lentiviral 
transfection (Fu et al., 2017). Its overexpression proved effective 
at counteracting CHT-induced GC apoptosis. Aging mechanisms 
of action appeared to be involved in modulating the PTEN and 
PI3K/Akt pathway. This highlights the crucial role that the PI3K/ 
Akt pathway plays in follicle maintenance and growth, and also 
the challenges of fully understanding how its function 
is governed.

Impact of MSCs on ovarian outcomes in vitro
MSC secretome properties have also been considered as 
enhancers of follicle survival and growth in in vitro models. 
Culturing follicles from the primordial stage to fertilizable 
oocytes is nevertheless a huge challenge (Telfer and Andersen, 
2021) and the best approach today involves a multi-step protocol, 
including: primordial follicle activation and initial growth; follicle 
development to the antral stage; and oocyte maturation in cus
tomized culture conditions to optimize outcomes (McLaughlin 
et al., 2018). At each step, however, there is significant follicle loss 
along with follicle growth, and uncertainty about oocyte compe
tence after culture. A number of published studies have investi
gated the ovarian follicle pool behavior in vitro and speculated 
whether addition of MSCs could enhance follicle outcomes in 
terms of survival and growth.

In vitro culture of GCs
In total, 24 studies scrutinized the impact of MSCs on GCs cul
tured in vitro (Table 1). The most commonly used types (or their 
exosomes) were murine BM-MSCs (Fu et al., 2008; Guo et al., 2013; 
Liu et al., 2014a; Chen et al., 2018; Sun et al., 2019; Yang et al., 
2020a; Lee, 2021; Eslami et al., 2023; Tian et al., 2023) and human 
UC-MSCs (Sun et al., 2017; Ding et al., 2020; Hong et al., 2020; 
Zhang et al., 2020, 2021a; Deng et al., 2021; Li et al., 2021; Qu et al., 
2022; Park et al., 2023) in experimental models utilizing murine 
GCs. Studies using human GCs involved a broader range of MSC 
sources, including amniotic fluid (Ding et al., 2017; Huang et al., 
2020; Geng et al., 2022), adipose tissue (Huang et al., 2018), bone 
marrow (Park et al., 2021), umbilical cord (Park et al., 2023), and 
menstrual blood (Yan et al., 2019). In all murine and in two 
human studies, GCs were exposed to CHT and specifically to 
alkylating agents, cisplatin or epirubicin, to mimic the gonado
toxic damage in vitro. The remaining human studies involved GCs 
taken from infertile women undergoing oocyte retrieval for IVF, 
either because of physiological aging (>40 years), a diminished 
ovarian reserve (DOR or POI), or an aging damage model by 
exposing them to H2O2 (Tian et al., 2023).

All studies detected a decrease in GC apoptosis in co-culture 
with MSCs. Some studies also investigated the impact of 
co-culture on GC proliferation, either by directly demonstrating 
increased proliferation rates, or observing activation of signaling 
pathways, such as PI3K/Akt and Hippo, which are known to be in
volved in GC survival and proliferation (Fu et al., 2017; Huang 
et al., 2018, 2020; Hong et al., 2020; Yang et al., 2020a; Li et al., 2021; 
Park et al., 2021, 2023; Qu et al., 2022). MSC co-culture also 
appeared to be beneficial for cell hormone function by upregulat
ing markers for steroidogenesis, such as cytochrome P450 19A1 
(CYP19A1) and Steroidogenic acute regulatory protein (StAR) 
(Huang et al., 2018, 2020; Park et al., 2021, 2023; Zhang et al., 
2021b), and hormone production, such as estradiol (E2), proges
terone, anti-M€ullerian hormone (AMH) and inhibin A and B, in 
the culture medium (Huang et al., 2018, 2020; Yan et al., 2019; 
Zhang et al., 2021b). MSC co-culture also appeared able to reverse 

some cellular aging mechanisms, including increased 
reactive oxygen species (ROS) generation, accumulation of 
b-galactosidase activity, and elevated methylation of adenosine 
in mRNA (m6A) in specific genome sites associated with mRNA 
regulation (Tian et al., 2023).

In vitro culture of ovarian tissue or isolated follicles
Eighteen studies considered use of different sources of MSCs or 
their derivatives in ovarian tissue culture (Table 2). Selected ani
mal models were rodents (11 studies), ovine (three studies), and 
pigs (one study), while four studies used human ovarian tissue. 
The primary outcome was to determine whether MSCs had a 
positive impact as ‘feeder cells’ on follicle and/or oocyte culture 
of: ovine or human ovarian cortical strips (Jia et al., 2017; Hosseini 
et al., 2019; Arrivabene Neves et al., 2020; Sousa et al., 2021); 
murine ovaries (Choi et al., 2020; Hong et al., 2020; Buigues et al., 
2021a; Cho et al., 2021; Zhang et al., 2021b; Mi et al., 2022; Cao 
et al., 2023); isolated preantral follicles of murine, ovine, or hu
man origin (Xia et al., 2015; Rajabi et al., 2018; Bezerra et al., 2019; 
Green et al., 2019; Tomaszewski et al., 2019); and murine or por
cine COCs (Maldonado et al., 2018). A positive impact was ob
served on in vitro follicle populations in all studies using rodent 
ovarian tissue, showing either increased follicle growth or more 
follicles with a normal morphology. Conflicting conclusions on 
the role of MSCs in follicle growth were reached for ovine and hu
man ovarian tissue, with some authors detecting a positive effect 
(Xia et al., 2015; Bezerra et al., 2019; Hosseini et al., 2019; Sousa 
et al., 2021) and others not (Jia et al., 2017; Arrivabene Neves et al., 
2020). Equally controversial was the impact of MSCs on oocyte 
outcomes after culture. Indeed, two studies found higher meiotic 
resumption rates in a murine model (Maldonado et al., 2018; 
Green et al., 2019), while three others, investigating oocyte 
growth, meiotic resumption, and maturation rates, did not dem
onstrate any difference compared to in vitro culture without 
MSCs (Rajabi et al., 2018; Bezerra et al., 2019; Arrivabene Neves 
et al., 2020).

These discrepant results may be explained by several factors 
related to the high variability of the experimental design, not 
only in the choice of MSC source and ovarian tissue model, but 
also in the number of cells used for each experiment. Indeed, it is 
important to note that studies demonstrating a less significant 
impact of MSCs on ovarian tissue culture are also those using the 
smallest number of MSCs, for example, 1 � 103 cells (Rajabi et al., 
2018; Arrivabene Neves et al., 2020), or MSC-conditioned medium 
(Jia et al., 2017; Bezerra et al., 2019), which may be insufficient to 
significantly affect oocyte growth and maturation in vitro. 
Various other markers of ovarian tissue viability have also been 
assessed, suggesting a positive effect when the MSC secretome is 
added to in vitro culture. These include: an increase in oocyte- 
related growth factors like growth differentiation factor 9 (GDF) 
and bone morphogenic protein 15 (BMP15) (Xia et al., 2015; Rajabi 
et al., 2018; Hosseini et al., 2019; Lee, 2021); enhanced steroidogen
esis (Xia et al., 2015; Rajabi et al., 2018; Green et al., 2019; Hosseini 
et al., 2019); greater production of growth factors, such as basic fi
broblast growth factor (bFGF), hepatocyte growth factor (HGF), 
transforming growth factor b (TFGb), insulin growth factor 1 
(IGF1), vascular endothelial growth factor (VEGF), and epithelial 
growth factor (EGF) (Tomaszewski et al., 2019; Cho et al., 2021; 
Lee, 2021); and finally decreased ROS generation in vitro (Bezerra 
et al., 2019; Lee, 2021).

Ovaries were pretreated with chemotherapeutic drugs (cyclo
phosphamide and cisplatin) in three studies (Hong et al., 2020; 
Buigues et al., 2021a; Cao et al., 2023). As in previous reports on 
CHT-treated GCs, the main outcome was to assess whether MSCs 
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protect against gonadotoxic damage. Buigues et al. (2021a) used 
human blood containing either BM-MSCs from both patients 
with POI after granulocyte colony-stimulating factor (GCS-F) 
treatment or UC-MSCs from newborn girls. Both MSC sources 
showed higher levels of expression of genes involved in DNA 
damage recognition and repair after CHT-induced injury. Hong 
et al. (2020) evidenced that use of human UC-MSCs in 
CHT-injured rodent ovaries exerted a positive effect by reducing 
follicle apoptosis and boosting the PI3K/Akt pathway for greater 
activation and survival.

Repairing ovarian damage with MSCs
Among the numerous strategies under development to identify 
an effective treatment for women affected by POI, use of MSCs 
has been gaining ground over recent years. The goal of stem cell 
therapy for ovarian rejuvenation is to protect the pool of remain
ing quiescent follicles still residing in some patients in order to 
improve their reproductive chances (Polonio et al., 2020). This po
tential treatment is the result of a number of studies in mice 
whose ovarian function was damaged by various chemothera
peutic treatments or other toxins, such as ozone. Ovarian injury 
models have been indeed widely used in research to mimic both 
infertility and irreversible ovarian failure caused by gonadotoxic 
drugs depending on dose and mode of administration (Generoso 
et al., 1971). The impact of MSCs on the remaining ovarian reserve 
has also been investigated using animal models of natural aging 
(Polonio et al., 2020).

Natural aging and chemotherapy-induced damage: 
comparing experimental models
Thirteen studies used natural aging animal models for compari
son with young and fertile subjects (Table 3). The majority in
volved use of rodents (Guo et al., 2013; Li et al., 2017; Ding et al., 
2018; Huang et al., 2020; Kim et al., 2020; Yang et al., 2020b; Liu 
et al., 2021; Wang et al., 2022; Zhang et al., 2022a), while three uti
lized bovines (Malard et al., 2020), mares (Grady et al., 2019), and 
macaques (Tian et al., 2021). Various sources of MSCs were used 
at different concentrations. Six of the studies employed a single 
MSC injection, while the rest opted for repeated administration.

With regard to gonadotoxic damage, 65 studies were selected. 
They were all aiming to characterize the effect of MSC use to re
verse gonadotoxic injury in a murine model, except one study 
that used rabbits (Table 4). In 36 studies, cyclophosphamide was 
administered at different doses ranging from 50 to 200 mg/kg/day 
for just 1 or up to 15 days (Fu et al., 2008, 2017; Deng et al., 2021; 
Abd-Allah et al., 2013; Lai et al., 2013, 2014; Sun et al., 2013; 
Takehara et al., 2013; Kilic et al., 2014; Liu et al., 2014b; Xiao et al., 
2014; Zhu et al., 2015; Song et al., 2016; Badawy et al., 2017; Ding 
et al., 2017, 2020; Ling et al., 2017, 2019, 2022a,b; Pan et al., 2017; 
Bao et al., 2018; Chen et al., 2018, 2023; Herraiz et al., 2018a; Huang 
et al., 2018; Mohamed et al., 2018; Besikcioglu et al., 2019; Yang 
et al., 2019a,b, 2020a; Zarbakhsh et al., 2019; Zheng et al., 2019; 
Feng et al., 2020; Luo et al., 2020; Shen et al., 2020; Buigues et al., 
2021a; Çil and Mete, 2021; Jalalie et al., 2021; Li et al., 2021; Lv 
et al., 2021; Park et al., 2021, 2023; Salvatore et al., 2021; Sen 
Halicioglu et al., 2022; Geng et al., 2022; Zhang et al., 2022b, 2023; 
Cao et al., 2023; Eslami et al., 2023). In 17 studies, busulfan was 
used at doses ranging from 12 to 30 mg/kg/day for single or re
peated administration (Table 4). In four studies (Ding et al., 2017; 
Herraiz et al., 2018a; Salvatore et al., 2021; Buigues et al., 2021a), 
different doses were selected and compared in order to mimic a 
model of mild and severe ovarian injury. Eight studies used cis
platin at doses from 2 to 50 mg/kg/day to induce an ovarian dam
age model (Liu et al., 2014a; Wang et al., 2017; Sun et al., 2019; Cui 

et al., 2020; Hong et al., 2020; Zhang et al., 2021a; Luo et al., 2022; 
Qu et al., 2022), while others employed whole body irradiation of 
3.2 and 4 Gy, respectively (El-Derany et al., 2021; Liu et al., 2021), 
paclitaxel (Elfayomy et al., 2016), epirubicin (Guo et al., 2019), 
vinylcyclohexene diepoxide (Zhang et al., 2021b; Jiao et al., 2022), 
hydrogen peroxide (Liu et al., 2019), and zona pellucida 3 peptide 
(Li et al., 2019; Zhang et al., 2021c) to repair ovarian damage. 
Using MSCs encounters the same great variability in terms of 
stem cell sources, concentrations and modes of administration 
as do models of natural aging and rejuvenation. Moreover, in 
only 47 of the 65 studies (72%) was there a known time frame be
tween use of gonadotoxic agents and MSC treatment, ranging 
from 0 to 24 h in 21 studies, up to 1 week in 20 studies, and much 
longer (from 10 days to 6 weeks) in the remaining six studies. This 
is a crucial factor for the ovarian damage model, since some 
events, like DNA damage and apoptosis induction, arise just 
hours after drug exposure, while tissue remodeling and fibrosis 
occur over subsequent weeks. Such variability makes it difficult 
to evaluate the actual healing properties and effects of MSCs on 
ovarian reserve injury, and may limit the applicability of the 
results in a clinical setting.

Ovarian rejuvenation and gonadotoxic damage healing: 
outcomes and mechanism of action
Outcomes for both ovarian rejuvenation and gonadotoxic dam
age healing were relatively homogeneous, both showing a posi
tive impact of MSCs on follicle count through regulation of a 
number of key processes in the ovarian microenvironment. A de
crease in apoptosis in all ovarian compartments, including GCs, 
theca cells and ovarian stroma, was evidenced in the vast major
ity of the studies. MSCs appear to significantly downregulate var
ious signals responsible for triggering the apoptosis cascade, 
involving upregulation of antiapoptotic molecules such as B-cell 
lymphoma 2 (BCL2), survivin (Huang et al., 2020), and NR4A1, 
which look to be specific to theca cells (Luo et al., 2022), and a 
shift in the relation between pro- and antiapoptotic signals; for 
example, the BCL2/BCL2-associated X (BAX) ratio (Zarbakhsh 
et al., 2019; Geng et al., 2022; Ling et al., 2022b; Luo et al., 2022; Qu 
et al., 2022; Zhang et al., 2023). This is probably a result of the 
paracrine signaling of MSCs, which are rich in growth factors like 
VEGF, HGF, and IGF-1, and able to promote cell survival and pro
liferation in vitro and in vivo (Uzumcu et al., 2006; Polonio et al., 
2020; Chen et al., 2023).

MSC paracrine signaling has been shown to target different 
growth factors, including VEGF, HGF, TGFb, IGF-1, and nerve 
growth factor (NGF), whose presence was first confirmed in MSC 
in vitro, and then detected in the ovaries after in vivo administra
tion of MSCs (Abd-Allah et al., 2013; Sun et al., 2013; Takehara 
et al., 2013; Elfayomy et al., 2016; Ling et al., 2017, 2019, 2022b; 
Zheng et al., 2019; Yang et al., 2019a; Deng et al., 2021; Jiao et al., 
2022). Elevated proangiogenic growth factor levels may enhance 
tissue revascularization, whose increase is sustained by develop
ment of theca cells around secondary follicles and is essential for 
their further growth (Takehara et al., 2013; Yang et al., 2019a,b; 
Tian et al., 2021; Buigues et al., 2021a; Chen et al., 2023). On the 
other hand, proinflammatory cytokines Il6 and Ilb1 were found 
at decreased levels after MSCs use (Lai et al., 2014; Ling et al., 
2017; Deng et al., 2021). Such regulation of the cytokine environ
ment, favoring neovascularization (Qu et al., 2022), and control of 
inflammation, may be why collagen deposition leading to fibrosis 
is also reduced (Abd-Allah et al., 2013; Jalalie et al., 2021; Tian 
et al., 2021; Zhang et al., 2021b; Chen et al., 2023; Park et al., 2023).
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This favorable paracrine signaling results in not only GC sur
vival, but also broader beneficial effects on the ovarian reserve. 
Indeed, hormone function appeared to be restored, showing im
proved hormone values in many studies (decrease in FSH and in
crease in AMH and E2). Along with endocrine function 
restoration, effective protection of the follicle pool was also evi
denced by greater numbers of oocytes and embryos (Lai et al., 
2013; Sun et al., 2013; Herraiz et al., 2018a; Grady et al., 2019; Liu 
et al., 2019; Malard et al., 2020; Jalalie et al., 2021; Liu et al., 2021; 
Salvatore et al., 2021; Wang et al., 2022), higher pregnancy rates, 
and larger litters (Takehara et al., 2013; Lai et al., 2014; Xiao et al., 
2014; Zhu et al., 2015; Ding et al., 2017; Liu et al., 2019; Herraiz 
et al., 2018a; Mohamed et al., 2019; Cui et al., 2020; Yang et al., 
2020b; Buigues et al., 2021a; Lv et al., 2021; Zhang et al., 2021a,b; 
Ling et al., 2022a; Eslami et al., 2023; Park et al., 2023).

In terms of follicle quality, enhanced follicle growth and im
proved follicle morphology were often observed. A number of po
tential mechanisms could be involved in this observation, since 
follicle growth and function are regulated by a complex interac
tion of pathways. This includes the ability of follicles to remain 
quiescent in the ovarian cortex, with oocytes in meiotic arrest, 
and at the same time ready for recruitment and further growth 
(Grosbois et al., 2020). One of the main biological functions im
pacted by the MSC secretome does appear to be primordial folli
cle activation. Interaction with the PI3K/Akt pathway was indeed 
demonstrated in several studies, resulting in better follicle 
growth (Ding et al., 2018; Liu et al., 2019, 2021; Hong et al., 2020; 
Huang et al., 2020; Yang et al., 2020a,b; Çil and Mete, 2021; Deng 
et al., 2021; El-Derany et al., 2021; Cao et al., 2023). Other cell pro
liferation signals, like SMADs and c-Jun N-terminal kinase (JNK2) 
(Bao et al., 2018; Huang et al., 2018; Feng et al., 2020), were also 
found, as were cell-cell interaction signals such as connexin 43 
expression (Sen Halicioglu et al., 2022). Rapid oocyte growth and 
meiotic resumption require an efficient engine to ensure com
plete maturation and good quality embryos. This is facilitated by 
the presence of a large mitochondrial mass and abundance of 
substrates, including glucose and fatty acids for oxidative phos
phorylation (Al-Zubaidi et al., 2021). The impact of MSCs on mito
chondrial function in oocytes was also explored in one study, 
which found a more substantial relevant increase in mitochon
drial DNA in the presence of MSCs, a key step allowing further 
meiotic resumption (Wang et al., 2022).

The effect on mitochondria is part of a more extensive influ
ence that MSCs have on cell function, which has been shown by 
several authors to exert anti-aging properties (Cacciottola et al., 
2021a). Mitochondrial function and control of oxidative stress in 
cells are among critical factors in cell senescence, and their regu
lation may explain the rejuvenating effect of stem cell therapy. 
Moreover, MSCs were found to reverse other specific signaling 
pathways associated with aging, including upregulation of DNA 
damage repair mechanisms, namely phosphorylated histone 
H2AX (cH2AX), breast cancer 1 (BRCA1), poly [ADP-ribose] poly
merase 1 (PARP1), and X-ray repair cross complementing 6 
(XRCC6) (Huang et al., 2020), as well as cell cycle progression (El- 
Derany et al., 2021; Tian et al., 2021). One study explored the pos
sibility of enhancing ovarian tissue quality by injecting MSC- 
derived mitochondria into the periovarian space, exhibiting upre
gulation of gene pathways related to mitochondrial function and 
energy supply (Zhang et al., 2022a). The experiment did not, how
ever, demonstrate any significant effect on the ovarian reserve, 
confirming that natural aging is more challenging to reverse than 
iatrogenic treatments.

Poor follicle quality may also be explained by other less ex
plored mechanisms. Endoplasmic reticulum (ER) stress was in
vestigated in one study as a potential trigger of follicle death, 
using markers like inositol-requiring enzyme 1a and glucose- 
regulated protein 78 (Li et al, 2019). MSCs appeared to reverse this 
cell dysfunction, resulting in restored GC survival. ER stress is 
caused by the accumulation of unfolded or misfolded proteins 
caused by various pathological conditions, including oxidative 
stress and inflammation. It leads to organelle swelling in the 
form of cytoplasmic vacuoles, which may trigger follicle death by 
atresia (Hay et al., 1976). While massive ER dysfunction owing to 
complete loss of calcium homeostasis and membrane lipid dam
age is very hard to reverse, moderate ER stress levels may allow 
oocyte maturation (Lin et al., 2012; Takahashi et al., 2019). It is 
therefore important to act upon this cell mechanism to ensure 
the development of normal and fertilizable oocytes, having com
pleted maturation, especially after in vitro growth (Harada et al., 
2015; McLaughlin et al., 2018).

MSCs for ovarian tissue transplantation
Twelve studies on ovarian tissue transplantation were identified 
and included in the review (Table 5). The majority of studies on 
human ovarian tissue were published by two research groups in 
China (Xia et al., 2015; Cheng et al., 2022) and two research groups 
in Europe, namely the UCL Gynecology Research Unit in Brussels, 
Belgium (Manavella et al., 2018, 2019; Cacciottola et al., 2020, 
2021b,c) and the Reproductive Medicine Research Group in 
Valencia, Spain (Herraiz et al., 2018a; Buigues et al., 2021a,b). Two 
studies involved autologous ovarian transplantation in murine 
models (Damous et al., 2018; Yang et al., 2020b), where MSCs were 
either injected into the ovaries or systemically, taking advantage 
of their homing capacities, or grafted locally with the help of bio
compatible scaffolds (fibrin or Matrigel).

In terms of follicle outcomes, co-transplantation with MSCs 
provided follicle pool protection, especially of primordial follicles 
(Xia et al., 2015; Cacciottola et al., 2020, 2021b; Cheng et al., 2022), 
by both a decrease in follicle apoptosis (Xia et al., 2015; Damous 
et al., 2018; Buigues et al., 2021b; Cacciottola et al., 2021b; Cheng 
et al., 2022) and PI3K/Akt pathway activation (Cacciottola et al., 
2021b). These findings may be explained by what is already 
known about the impact of MSCs on ovarian tissue revasculariza
tion. Indeed, earlier reoxygenation (Manavella et al., 2018) and re
perfusion (Xia et al., 2015; Cacciottola et al., 2021c) have been 
evidenced, along with greater revascularization of ovarian grafts 
(Xia et al., 2015; Manavella et al., 2018; Herraiz et al., 2018a; 
Manavella et al., 2019; Buigues et al., 2021b; Cheng et al., 2022). 
The main reason for this positive effect is the MSC secretome, 
which contains a number of proangiogenic factors like VEGF and 
bFGF (Manavella et al., 2019; Buigues et al., 2021a; Cacciottola 
et al., 2021c).

Ovarian tissue transplantation outcomes are currently limited 
by massive follicle death occurring shortly after grafting because 
of both hypoxia-mediated apoptosis and non-physiological folli
cle activation (Dolmans et al., 2021a). Transplantation 
approaches using MSCs to boost early graft revascularization 
may well address this issue in a clinical setting and enhance 
transplantation results. All patients would potentially benefit, 
but especially those with lower chances of fertility restoration us
ing this technique. This includes subjects showing signs of an al
ready depleted follicle reserve in their cryopreserved ovarian 
cortex, or with a damaged pelvis caused by repeated surgery or 
previous pelvic irradiation, making it unable to properly host 
ovarian grafts (Dolmans et al., 2021b).
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Ongoing clinical applications
Use of MSCs to increase the likelihood of pregnancy in postmeno
pausal patients has already been recorded in a clinical context, 
with publication of case reports and small case series. The first 
live births were obtained by intraovarian BM-MSC injection by 
Edessy et al. (2016) in 1 out of 10 treated patients with POI 
(26–33 years), by Gabr et al. (2016) in 1 out of 30 treated patients 
with POI (18–40 years), and by Gupta et al. (2018) in one patient 
aged 45 years. Preliminary results on DOR subjects were pub
lished by Herraiz et al. (2018b) and the study is still ongoing. 
Seventeen patients with DOR (<39 years) undergoing intra- 
arterial catheterization for MSC mobilization using GCS-F were 
included. An improvement in ovarian function was observed in 
around 80% of patients within 4 weeks. There were increased 
numbers of antral follicles, particularly in the infused ovary, and 
also retrieved oocytes, with a significant drop in cancelation rates 
after controlled ovarian stimulation (Herraiz et al., 2018b). Five 
pregnancies were obtained, three of which resulted in a healthy 
baby at the time of publication. The same group (Herraiz et al.) 
recruited 20 patients with POI (<39 years of age) for a new study 
investigating both intra-arterial catheterization and stem cell 
mobilization in peripheral blood using granulocyte-colony stimu
lating factor. The second technique relying on peripheral blood, 
which is much less invasive than the original approach, appears 
to have a systemic effect on both ovaries after stem cell injection, 
thanks to their homing ability to distant damaged sites, as previ
ously suggested by several animal studies (Polonio et al., 2020). 
Only preliminary data have been published so far, reporting 
menses recovery in around 40% of patients and one pregnancy to 
date (Polonio et al., 2020).

Clinical application of sources other than BM-MSCs for fertil
ity restoration in patients with POI have also been published re
cently. One study reported menses recovery in four out of nine 
patients (29–39 years) treated by intraovarian injection of AT- 
MSCs (Mashayekhi et al., 2021). Another study reported menses 
recovery and increased antral follicle count in 4 out of 15 POI 
patients treated with autologous Men-MSCs (Zafardoust et al., 
2023). In terms of fertility restoration, four live births were 
obtained after treating 61 patients with POI (<35 years old) with 
UC-MSCs (Yan et al., 2020).

All published studies have reported live birth rates of around 
10% in patients with POI. These may be considered comparable 
to spontaneous pregnancy rates of around 5–10% in women with 
POI in the first few years after their diagnosis, owing to spontane
ous but temporary ovarian reactivation (Fraison et al., 2019). 
While these results are promising and corroborated by sound evi
dence from animal studies, ovarian rejuvenation with MSCs has 
not yet delivered the expected results. Future studies need to fo
cus on ways of enhancing fertility in these patients (Rosario and 
Anderson, 2021). One way may be maximizing the effect of stem 
cell use by choosing the best conditions, in terms of cell type, 
concentration, and administration mode, in order to boost their 
biological impact on the dormant ovarian reserve. Another way 
may be advancing our understanding of the pathophysiology of 
POI in order to be able to select the subgroup of patients with the 
best chance of benefiting from this technique.

Discussion/conclusions
The present article offers a comprehensive overview of possible 
future applications of MSCs in reproductive medicine. MSCs from 
different sources, including fetal and adult tissues, have been 
tested in different conditions, as have their derivatives (exosomes 

and the secretome contained in culture medium). The majority 

of studies consider follicle recovery after CHT exposure, with nu

merous in vitro studies on GCs and in vivo studies in murine mod

els. All of them investigate the potentially beneficial impacts of 
MSCs on the follicle pool during or immediately after gonado

toxic damage, providing more in-depth knowledge of the ability 

of GCs to recover, as well as the dynamics governing follicle 

death and abnormal activation after injury. This model does not, 

however, represent the clinical situation of young women diag
nosed with DOR or POI caused by gonadotoxic therapy years 

prior. This could be the reason for the discrepancy between out

comes of preclinical studies, which clearly show significant pro

tection of the follicle pool mediated by MSCs, and results from 
the first clinical trials, in which the MSC effect appears to be 

much more modest. Further studies are needed to better under

stand the impact of MSCs on the follicle pool, particularly on oo

cyte quality, which may be the limiting factor responsible for the 
disappointing results.

Other promising clinical applications involving MSCs are 

emerging from the literature, in our quest to enhance fertility 
outcomes. Ovarian tissue co-culture with MSCs, used as feeder 

cells to improve follicle survival, growth, and oocyte competence, 

may serve to propel the ovarian tissue in vitro culture technique 

toward legitimate clinical application. Similarly, MSCs have also 
proved effective at boosting revascularization of the grafting site 

in the context of ovarian tissue transplantation. Indeed, data 

from preclinical studies using human ovarian tissue xenografting 

models appear robust and reproducible, suggesting a possible 

role for MSCs in counteracting large-scale ovarian follicle pool 
loss after grafting, which is still one of the main limiting factors 

of the technique.
To sum up, all gathered data on the one hand show that re

generative medicine techniques are quickly gaining ground 

among the innovative techniques being developed for future clin

ical application in the field of reproductive medicine. On the 

other hand, there is still a lot of work to do before MSCs can be 
safely and effectively used to improve follicle outcomes in differ

ent clinical applications. We are moving in the right direction but 

need to delve deeper to advance our fundamental understanding 

of these multipotent cells.
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